Diffraction for the heat equation

Thierry Hargé

Journées équations aux dérivées partielles (1993)

  • Volume: 1993, Issue: 2, page 1-9
  • ISSN: 0752-0360

How to cite

top

Hargé, Thierry. "Diffraction pour l'équation de la chaleur." Journées équations aux dérivées partielles 1993.2 (1993): 1-9. <http://eudml.org/doc/93271>.

@article{Hargé1993,
author = {Hargé, Thierry},
journal = {Journées équations aux dérivées partielles},
keywords = {heat kernel; short-time asymptotics},
language = {fre},
number = {2},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {Diffraction pour l'équation de la chaleur},
url = {http://eudml.org/doc/93271},
volume = {1993},
year = {1993},
}

TY - JOUR
AU - Hargé, Thierry
TI - Diffraction pour l'équation de la chaleur
JO - Journées équations aux dérivées partielles
PY - 1993
PB - Ecole polytechnique
VL - 1993
IS - 2
SP - 1
EP - 9
LA - fre
KW - heat kernel; short-time asymptotics
UR - http://eudml.org/doc/93271
ER -

References

top
  1. [Ag] S. AGMON : Lectures on exponential decay of solutions of second order elliptic equations, Mathematical Notes 29, Princeton University Press. Zbl0503.35001
  2. [Bu] V.S. BUSLAEV : Continuum integrals and the asymptotic behavior of the solutions of parabolic equations as t → 0, Applications to Diffraction, 67-86 Topics in Mathematical Physics, Vol 2, Plenum, New-York, 1968. 
  3. [Ha] T. HARGÉ : Thèse Orsay. 
  4. [Ha] T. HARGÉ : Diffraction pour l'équation de la chaleur, A paraître au Duke Math. Journal. Zbl0805.35039
  5. [Hs] P. HSU : Short time asymptotics of the heat kernel on concave boundary, Siam J. Math. Anal 20 (1989), 1109-1127. Zbl0685.58035MR90f:35032
  6. [IK] IKEDA et KUSUOKA : Short time asymptotics for fundamental solutions of diffusion equations, Springer Lecture Notes in Mathematics 1322 (1988), 37-49. Zbl0647.60085MR89i:35023
  7. [Le] G. LEBEAU : Régularité Gevrey 3 pour la diffraction, Communication in Partial Differential Equations, 9 (15), 1437-1494 (1984). Zbl0559.35019MR86d:58116
  8. [Mi] MILNOR : Morse Theory, 67-76. 
  9. [NS] J.R. NORRIS et D.W. STROOCK : Estimate on the fundamental solution to heat flows with uniformly elliptic coefficients, Proc. Lond. Math. Soc. 62 (1991), 375-402. Zbl0694.35075MR92a:35075
  10. [VdB] M. VAN DEN BERG : A Gaussian lower bound for the Dirichlet heat kernel, Bull. Lond. Math. Soc. 24 (1992), 475-477. Zbl0801.35035MR93k:35116

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.