Diffraction for the heat equation
Journées équations aux dérivées partielles (1993)
- Volume: 1993, Issue: 2, page 1-9
- ISSN: 0752-0360
Access Full Article
topHow to cite
topHargé, Thierry. "Diffraction pour l'équation de la chaleur." Journées équations aux dérivées partielles 1993.2 (1993): 1-9. <http://eudml.org/doc/93271>.
@article{Hargé1993,
author = {Hargé, Thierry},
journal = {Journées équations aux dérivées partielles},
keywords = {heat kernel; short-time asymptotics},
language = {fre},
number = {2},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {Diffraction pour l'équation de la chaleur},
url = {http://eudml.org/doc/93271},
volume = {1993},
year = {1993},
}
TY - JOUR
AU - Hargé, Thierry
TI - Diffraction pour l'équation de la chaleur
JO - Journées équations aux dérivées partielles
PY - 1993
PB - Ecole polytechnique
VL - 1993
IS - 2
SP - 1
EP - 9
LA - fre
KW - heat kernel; short-time asymptotics
UR - http://eudml.org/doc/93271
ER -
References
top- [Ag] S. AGMON : Lectures on exponential decay of solutions of second order elliptic equations, Mathematical Notes 29, Princeton University Press. Zbl0503.35001
- [Bu] V.S. BUSLAEV : Continuum integrals and the asymptotic behavior of the solutions of parabolic equations as t → 0, Applications to Diffraction, 67-86 Topics in Mathematical Physics, Vol 2, Plenum, New-York, 1968.
- [Ha] T. HARGÉ : Thèse Orsay.
- [Ha] T. HARGÉ : Diffraction pour l'équation de la chaleur, A paraître au Duke Math. Journal. Zbl0805.35039
- [Hs] P. HSU : Short time asymptotics of the heat kernel on concave boundary, Siam J. Math. Anal 20 (1989), 1109-1127. Zbl0685.58035MR90f:35032
- [IK] IKEDA et KUSUOKA : Short time asymptotics for fundamental solutions of diffusion equations, Springer Lecture Notes in Mathematics 1322 (1988), 37-49. Zbl0647.60085MR89i:35023
- [Le] G. LEBEAU : Régularité Gevrey 3 pour la diffraction, Communication in Partial Differential Equations, 9 (15), 1437-1494 (1984). Zbl0559.35019MR86d:58116
- [Mi] MILNOR : Morse Theory, 67-76.
- [NS] J.R. NORRIS et D.W. STROOCK : Estimate on the fundamental solution to heat flows with uniformly elliptic coefficients, Proc. Lond. Math. Soc. 62 (1991), 375-402. Zbl0694.35075MR92a:35075
- [VdB] M. VAN DEN BERG : A Gaussian lower bound for the Dirichlet heat kernel, Bull. Lond. Math. Soc. 24 (1992), 475-477. Zbl0801.35035MR93k:35116
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.