Stable solutions and their spatial structure of the Ginzburg-Landau equation
Journées équations aux dérivées partielles (1995)
- Volume: 1995, page 1-5
- ISSN: 0752-0360
Access Full Article
topHow to cite
topMorita, Yoshihisa. "Stable solutions and their spatial structure of the Ginzburg-Landau equation." Journées équations aux dérivées partielles 1995 (1995): 1-5. <http://eudml.org/doc/93297>.
@article{Morita1995,
author = {Morita, Yoshihisa},
journal = {Journées équations aux dérivées partielles},
keywords = {instability of non-constant solutions},
language = {eng},
pages = {1-5},
publisher = {Ecole polytechnique},
title = {Stable solutions and their spatial structure of the Ginzburg-Landau equation},
url = {http://eudml.org/doc/93297},
volume = {1995},
year = {1995},
}
TY - JOUR
AU - Morita, Yoshihisa
TI - Stable solutions and their spatial structure of the Ginzburg-Landau equation
JO - Journées équations aux dérivées partielles
PY - 1995
PB - Ecole polytechnique
VL - 1995
SP - 1
EP - 5
LA - eng
KW - instability of non-constant solutions
UR - http://eudml.org/doc/93297
ER -
References
top- [1] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, 1994. Zbl0802.35142MR95c:58044
- [2] R.G. Casten and C.J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Diff. Eqns., vol.27, 1978, pp.266-273. Zbl0338.35055MR80a:35064
- [3] N. Dancer, On domain variation for some non-isolated sets of solutions and a problem of Jimbo and Morita, in preparation.
- [4] V. Ginzburg and L. Landau, On the theory of superconductivity, Zh. eksper. teor. Fiz. 20 (1950) 1064-1082.
- [5] J. K. Hale, Asymptotic Behaviour of Dissipative Systems, Math. Surveys and Monographs 25 A.M.S., 1988. Zbl0642.58013MR89g:58059
- [6] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York 1981. Zbl0456.35001MR83j:35084
- [7] S. Jimbo and Y. Morita, Stability of Non-constant Steady State Solutions to a Ginzburg-Landau Equation in Higher Space Dimensions, Nonlinear Analysis: T.M.A., Vol.22, 1994, pp. 753-770. Zbl0798.35019MR95i:35034
- [8] S. Jimbo and Y. Morita, Ginzburg-Landau equation and stable solutions in a rotational domain, to appear in SIAM J. of Math. Anal. Zbl0865.35016
- [9] S. Jimbo and Y. Morita, Stable Solutions with Zeros to the Ginzburg-Landau Equation with Neumann Boundary Condition, in preparation. Zbl0853.35119
- [10] S. Jimbo, Y. Morita and J. Zhai, Ginzburg-Landau equation and stable steady state solutions in a non-trivial domain, to appear in Comm. in P.D.E. Zbl0841.35041
- [11] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Pub. of RIMS Kyoto Univ., vol. 15, 1979, pp. 401-454. Zbl0445.35063MR80m:35046
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.