Stable solutions and their spatial structure of the Ginzburg-Landau equation

Yoshihisa Morita

Journées équations aux dérivées partielles (1995)

  • Volume: 1995, page 1-5
  • ISSN: 0752-0360

How to cite

top

Morita, Yoshihisa. "Stable solutions and their spatial structure of the Ginzburg-Landau equation." Journées équations aux dérivées partielles 1995 (1995): 1-5. <http://eudml.org/doc/93297>.

@article{Morita1995,
author = {Morita, Yoshihisa},
journal = {Journées équations aux dérivées partielles},
keywords = {instability of non-constant solutions},
language = {eng},
pages = {1-5},
publisher = {Ecole polytechnique},
title = {Stable solutions and their spatial structure of the Ginzburg-Landau equation},
url = {http://eudml.org/doc/93297},
volume = {1995},
year = {1995},
}

TY - JOUR
AU - Morita, Yoshihisa
TI - Stable solutions and their spatial structure of the Ginzburg-Landau equation
JO - Journées équations aux dérivées partielles
PY - 1995
PB - Ecole polytechnique
VL - 1995
SP - 1
EP - 5
LA - eng
KW - instability of non-constant solutions
UR - http://eudml.org/doc/93297
ER -

References

top
  1. [1] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, 1994. Zbl0802.35142MR95c:58044
  2. [2] R.G. Casten and C.J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Diff. Eqns., vol.27, 1978, pp.266-273. Zbl0338.35055MR80a:35064
  3. [3] N. Dancer, On domain variation for some non-isolated sets of solutions and a problem of Jimbo and Morita, in preparation. 
  4. [4] V. Ginzburg and L. Landau, On the theory of superconductivity, Zh. eksper. teor. Fiz. 20 (1950) 1064-1082. 
  5. [5] J. K. Hale, Asymptotic Behaviour of Dissipative Systems, Math. Surveys and Monographs 25 A.M.S., 1988. Zbl0642.58013MR89g:58059
  6. [6] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York 1981. Zbl0456.35001MR83j:35084
  7. [7] S. Jimbo and Y. Morita, Stability of Non-constant Steady State Solutions to a Ginzburg-Landau Equation in Higher Space Dimensions, Nonlinear Analysis: T.M.A., Vol.22, 1994, pp. 753-770. Zbl0798.35019MR95i:35034
  8. [8] S. Jimbo and Y. Morita, Ginzburg-Landau equation and stable solutions in a rotational domain, to appear in SIAM J. of Math. Anal. Zbl0865.35016
  9. [9] S. Jimbo and Y. Morita, Stable Solutions with Zeros to the Ginzburg-Landau Equation with Neumann Boundary Condition, in preparation. Zbl0853.35119
  10. [10] S. Jimbo, Y. Morita and J. Zhai, Ginzburg-Landau equation and stable steady state solutions in a non-trivial domain, to appear in Comm. in P.D.E. Zbl0841.35041
  11. [11] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Pub. of RIMS Kyoto Univ., vol. 15, 1979, pp. 401-454. Zbl0445.35063MR80m:35046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.