Regularity properties of semilinear boundary problems in Besov and Triebel-Lizorkin spaces
Journées équations aux dérivées partielles (1995)
- Volume: 1995, page 1-10
- ISSN: 0752-0360
Access Full Article
topHow to cite
topJohnsen, Jon. "Regularity properties of semilinear boundary problems in Besov and Triebel-Lizorkin spaces." Journées équations aux dérivées partielles 1995 (1995): 1-10. <http://eudml.org/doc/93299>.
@article{Johnsen1995,
author = {Johnsen, Jon},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-10},
publisher = {Ecole polytechnique},
title = {Regularity properties of semilinear boundary problems in Besov and Triebel-Lizorkin spaces},
url = {http://eudml.org/doc/93299},
volume = {1995},
year = {1995},
}
TY - JOUR
AU - Johnsen, Jon
TI - Regularity properties of semilinear boundary problems in Besov and Triebel-Lizorkin spaces
JO - Journées équations aux dérivées partielles
PY - 1995
PB - Ecole polytechnique
VL - 1995
SP - 1
EP - 10
LA - eng
UR - http://eudml.org/doc/93299
ER -
References
top- [1] L. Boutet de Monvel. Boundary problems for pseudo-differential operators. Acta Math., 126 : 11-51, 1971. Zbl0206.39401MR53 #11674
- [2] J. Franke. On the Spaces Fspq of Triebel-Lizorkin Type : Pointwise Multipliers and Spaces on Domains. Math. Nachr., 125 : 29-68, 1986. Zbl0617.46036MR88e:46029
- [3] G. Grubb. Functional Calculus of Pseudo-Differential Boundary Problems, volume 65 of Progress in Mathematics. Birkhäuser, Boston, 1986. Zbl0622.35001MR88f:35002
- [4] G. Grubb. Pseudo-differential boundary problems in Lp-spaces. Comm. Part. Diff. Equations, 15 : 289-340, 1990. Zbl0723.35091MR91c:47108
- [5] G. Grubb. Parabolic pseudo-differential boundary problems and applications. In L. Cattabriga and L. Rodino, editors, Microlocal analysis and applications, Montecatini Terme, Italy, July 3-11, 1989, volume 1495 of Lecture Notes in Mathematics, Berlin, 1991. Springer. Zbl0763.35116
- [6] G. Grubb and N. J. Kokholm. A global calculus of parameter-dependent pseudodifferential boundary problems in Lp Sobolev spaces. Acta Math., 171 : 165-229, 1993. Zbl0811.35176MR94m:35328
- [7] G. Grubb and V. A. Solonnikov. Boundary value problems for the non-stationary Navier-Stokes equations treated by pseudo-differential methods. Math. Scand., 69 : 217-290, 1991. Zbl0766.35034MR93e:35082
- [8] J. Johnsen. Elliptic boundary problems and the Boutet de Monvel calculus in Besov and Triebel-Lizorkin spaces. (to appear in Math. Scand.). Zbl0873.35023
- [9] J. Johnsen. Pointwise multiplication of Besov and Triebel-Lizorkin spaces. (to appear in Math. Nachr.). Zbl0839.46026
- [10] J. Johnsen. Regularity properties of semi-linear boundary problems in Lp-related spaces. (in preparation).
- [11] J. Johnsen. The stationary Navier-Stokes equations in Lp-related spaces. PhD thesis, University of Copenhagen, Denmark, 1993. Ph.D.-series 1.
- [12] S. I. Pohožaev. The Sharp Apriori Estimates for Some Superlinear Degenerate Elliptic Problems. In Schmeisser, H.-J. and Triebel, H., editor, Function Spaces, Differential Operators and Nonlinear Problems, volume 133 of Teubner-Texte zur Mathematik, pages 200-217, Leipzig, 1993. Teubner Verlagsgesellschaft. Zbl0838.35018MR94i:35033
- [13] R. Temam. Navier-Stokes Equations, Theory and Numerical Analysis. Elsevier Science Publishers B.V., Amsterdam, 1984. (Third edition). Zbl0568.35002
- [14] H. Triebel. Theory of function spaces, volume 78 of Monographs in mathematics. Birkhäuser Verlag, Basel, 1983. Zbl0546.46027MR86j:46026
- [15] H. Triebel. Theory of function spaces II, volume 84 of Monographs in mathematics. Birkhäuser Verlag, Basel, 1992. Zbl0763.46025MR93f:46029
- [16] M. Yamazaki. A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 33 : 131-174, 1986. Zbl0608.47058MR87j:35393
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.