Symmetry of the Ginzburg-Landau minimizer in a disc

Elliott H. Lieb; Michael Loss

Journées équations aux dérivées partielles (1995)

  • Volume: 1995, page 1-12
  • ISSN: 0752-0360

How to cite


Lieb, Elliott H., and Loss, Michael. "Symmetry of the Ginzburg-Landau minimizer in a disc." Journées équations aux dérivées partielles 1995 (1995): 1-12. <>.

author = {Lieb, Elliott H., Loss, Michael},
journal = {Journées équations aux dérivées partielles},
keywords = {weak stability; vector field minimization problem},
language = {eng},
pages = {1-12},
publisher = {Ecole polytechnique},
title = {Symmetry of the Ginzburg-Landau minimizer in a disc},
url = {},
volume = {1995},
year = {1995},

AU - Lieb, Elliott H.
AU - Loss, Michael
TI - Symmetry of the Ginzburg-Landau minimizer in a disc
JO - Journées équations aux dérivées partielles
PY - 1995
PB - Ecole polytechnique
VL - 1995
SP - 1
EP - 12
LA - eng
KW - weak stability; vector field minimization problem
UR -
ER -


  1. [AL] F.J. Almgren, Jr. and E.H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2, 683-773 (1989). Zbl0688.46014MR90f:49038
  2. [BBH] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser 1994. Zbl0802.35142MR95c:58044
  3. [CG] G. Chiti, Rearrangements of functions and convergence in Orlicz spaces, Appl. Anal. 9, 23-27 (1979). Zbl0424.46023MR80e:46020
  4. [CT] M.G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc. 78, 358-390 (1980). Zbl0449.47059MR81a:47054
  5. [HH] R.M. Hervé and M. Hervé, Etude qualitative des solutions réeles de l'équation differentielle ..., (to appear) Zbl0836.34090
  6. [JT] A. Jaffe and C. Taubes, Vortices and Monopoles, Birkhäuser (1980). Zbl0457.53034MR82m:81051
  7. [LE1] E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math. 57, 93-105 (1977). Zbl0369.35022MR57 #11508
  8. [LE2] E.H. Lieb, Remarks on the Skyrme Model, in Proceedings of the Amer. Math. Soc. Symposia in Pure Math. 54, part 2, 379-384 (1993). (Proceedings of Summer Research Institute on Differential Geometry at UCLA, July 8-28, 1990.) Zbl0806.53077MR94e:81357
  9. [LL] E.H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau Minimizer in a Disc, Mathematical Research Letters 1, 701-715 (1994). Zbl0842.49014MR95h:58036
  10. [MP] P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, submitted to J. Funct. Anal. (1994). 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.