Boundary values of cohomology classes as hyperfunctions

François Trèves

Journées équations aux dérivées partielles (1995)

  • Volume: 1995, page 1-20
  • ISSN: 0752-0360

How to cite

top

Trèves, François. "Boundary values of cohomology classes as hyperfunctions." Journées équations aux dérivées partielles 1995 (1995): 1-20. <http://eudml.org/doc/93308>.

@article{Trèves1995,
author = {Trèves, François},
journal = {Journées équations aux dérivées partielles},
keywords = {boundary values of cohomology classes; hyperfunctions},
language = {eng},
pages = {1-20},
publisher = {Ecole polytechnique},
title = {Boundary values of cohomology classes as hyperfunctions},
url = {http://eudml.org/doc/93308},
volume = {1995},
year = {1995},
}

TY - JOUR
AU - Trèves, François
TI - Boundary values of cohomology classes as hyperfunctions
JO - Journées équations aux dérivées partielles
PY - 1995
PB - Ecole polytechnique
VL - 1995
SP - 1
EP - 20
LA - eng
KW - boundary values of cohomology classes; hyperfunctions
UR - http://eudml.org/doc/93308
ER -

References

top
  1. Cordaro, P. D. and Treves, F.— [1] Hyperfunctions in hypo-analytic structures, Annals of Math. Studies 136, Princeton University Press 1995. Zbl0817.32001
  2. Cordaro, P. D., Gindikin, S. and Treves, F.— [1] Boundary values of cohomology classes as hyperfunctions, J. of Functional Analysis 131 (1995). Zbl0847.32007MR96f:32012
  3. Gindikin, S.— [1] Hardy spaces and Fourier transform of ∂ -cohomology in tube domains, C.R. Acad. Sci. Paris 315 (1992), 1139-1143. Zbl0771.32001MR93m:32006
  4. Gindikin, S.— [2] Homological language for ∂ -cohomology and Representations of real semisimple Lie groups, Contemporary Math. 154 (1993), 103-115. Zbl0808.55006MR95b:32016
  5. Gindikin, S.— [3] The Radon transform from the cohomological point of view, in Seventy-five years of the Radon transform, ed. S. Gindikin and P. Michor, International Press 1994. Zbl0823.44006MR96a:32056
  6. Hörmander, L.— [1] The analysis of linear partial differential operators I & II, Springer Verlag 1983 Zbl0521.35002
  7. Ye Zaifei.— [1] Holomorphic extension and decomposition from a totally real manifold, Trans. Amer. Math. Soc. (1993). Zbl0784.32004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.