Eigenfunctions of the laplacian, quantum chaos, and computation

Dennis A. Hejhal

Journées équations aux dérivées partielles (1995)

  • Volume: 1995, page 1-11
  • ISSN: 0752-0360

How to cite

top

Hejhal, Dennis A.. "Eigenfunctions of the laplacian, quantum chaos, and computation." Journées équations aux dérivées partielles 1995 (1995): 1-11. <http://eudml.org/doc/93314>.

@article{Hejhal1995,
author = {Hejhal, Dennis A.},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-11},
publisher = {Ecole polytechnique},
title = {Eigenfunctions of the laplacian, quantum chaos, and computation},
url = {http://eudml.org/doc/93314},
volume = {1995},
year = {1995},
}

TY - JOUR
AU - Hejhal, Dennis A.
TI - Eigenfunctions of the laplacian, quantum chaos, and computation
JO - Journées équations aux dérivées partielles
PY - 1995
PB - Ecole polytechnique
VL - 1995
SP - 1
EP - 11
LA - eng
UR - http://eudml.org/doc/93314
ER -

References

top
  1. [B] M. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A10 (1977) 2083-2091. Zbl0377.70014MR58 #8961
  2. [C] Y. Colin de Verdiere, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985) 497-502. Zbl0592.58050MR87d:58145
  3. [D] P. Deligne, La conjecture de Weil I, IHES Publ. Math. 53 (1974) 273-307. Zbl0287.14001MR49 #5013
  4. [G] A. Good, Cusp forms and eigenfunctions of the Laplacian, Math. Ann. 255 (1981) 523-548. Zbl0439.30031MR82i:10029
  5. [H1] D.A. Hejhal, The Selberg Trace Formula for PSL (2,ℝ), vol. 1, Springer Lecture Notes in Mathematics 548 (1976), 516 pp. Zbl0347.10018MR55 #12641
  6. [H2] D.A. Hejhal, The Selberg Trace Formula for PSL (2,ℝ), vol. 2, Springer Lecture Notes in Mathematics 1001 (1983), 806 pp. Zbl0543.10020MR86e:11040
  7. [H3] D.A. Hejhal, Eigenvalues of the Laplacian for Hecke triangle groups, American Math. Soc. Memoir 469 (1992), 165 pp. Zbl0746.11025
  8. [HA] D.A. Hejhal and S. Arno, On Fourier coefficients of Maass waveforms for PSL (2,ℤ), Math. of Comp. 61 (1993) 245-267 and S11-S16. Zbl0781.11020MR94a:11062
  9. [HR] D.A. Hejhal and B. Rackner, On the topography of Maass waveforms for PSL (2,ℤ), Experimental Math. 1 (1992) 275-305. Zbl0813.11035MR95f:11037
  10. [L] D.H. Lehmer, Note on the distribution of Ramanujan's tau function, Math. of Comp. 24 (1970) 741-743. Zbl0214.30601MR43 #166
  11. [LS] W. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on PSL (2,ℤ) H, preprint, 1995, 38 pp. Zbl0852.11024MR97f:11037
  12. [MS] C. Moreno and F. Shahidi, The fourth moment of Ramanujan's τ - function, Math. Ann. 266 (1983) 233-239. Zbl0508.10014MR85i:11039
  13. [P] Y. Petridis, On squares of eigenfunctions for the hyperbolic plane and a new bound on certain L-series, International Math. Res. Notices (1995) 111-127. Zbl0833.11021MR96d:11058
  14. [PS] R. Phillips and P. Sarnak, On cusp forms for cofinite subgroups of PSL (2,ℝ), Invent. Math. 80 (1985) 339-364. Zbl0558.10017MR86m:11037
  15. [R1] R.A. Rankin, Sums of powers of cusp form coefficients II, Math. Ann. 272 (1985) 593-600. Zbl0556.10018MR87d:11032
  16. [R2] R.A. Rankin, A family of newforms, Ann. Acad. Sci. Fennicae 10 (1985) 461-467. Zbl0595.10019MR87b:11036
  17. [R3] R.A. Rankin, Fourier coefficients of cusp forms, Math. Proc. Cambr. Phil. Soc. 100 (1986) 5-29, especially 26-27. Zbl0616.10020MR87i:11060
  18. [Ra] M. Ratner, The rate of mixing for geodesic and horocycle flows, Ergodic Th. and Dyn. Sys. 7 (1987) 267-288. Zbl0623.22008MR88j:58103
  19. [Re] F. Reza, An Introduction to Information Theory, Dover Publications, 1994, especially §§8.6 and 8.7. Zbl0925.94068MR1298628
  20. [RS] Z. Rudnick and P. Sarnak, The behavior of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994) 195-213. Zbl0836.58043MR95m:11052
  21. [S1] P. Sarnak, Asymptotic behavior of periodic orbits of the horocyclic flow and Eisenstein series, Comm. Pure Appl. Math. 34 (1981) 719-739. Zbl0501.58027MR83m:58060
  22. [S2] P. Sarnak, On cusp forms, American Math. Soc. Contemp. Math. 53 (1986) 393-407. Zbl0618.10018MR87j:11047
  23. [S3] P. Sarnak, Inner products of eigenfunctions, International Math. Res. Notices (1994) 251-260. Zbl0833.11020MR95i:11039
  24. [ShW] C. Shannon and W. Weaver, The Mathematical Theory of Communication, Univ. of I11. Press, 1949, especially pp. 55, 56. Zbl0041.25804MR11,258e
  25. [Sh1] A. Shnirelman, Ergodic properties of eigenfunctions, Uspekhi Mat. Nauk. 29 (6) (1974) 181-182 [in Russian]. MR53 #6648
  26. [Sh2] A. Shnirelman, On the asymptotic properties of eigenfunctions in the regions of chaotic motion, Addendum in the book : V.F. Lazutkin, KAM Theory and Semiclassical Asymptotics to Eigenfunctions, Springer-Verlag, 1993, pp. 313-337. 
  27. [St] G. Steil, Eigenvalues of the Laplacian and of the Hecke operators for PSL (2,ℤ), Hamburg DESY Preprint 94-028, 1994, 25 pp. 
  28. [T] J. Thomas, An Introduction to Statistical Communication Theory, Wiley, 1969, especially pages 481 (top), 561, 562. Zbl0202.17801
  29. [V] A. Venkov, Spectral Theory of Automorphic Functions, Proc. Steklov Inst. Math. 153 (1982) 163 pp. Zbl0501.10029MR85j:11060b
  30. [Z1] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987) 919-941. Zbl0643.58029MR89d:58129
  31. [Z2] S. Zelditch, Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, J. Funct. Anal. 97 (1991) 1-49. Zbl0743.58034MR92h:11046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.