Singular Yang-Mills connections

Johan Rade

Journées équations aux dérivées partielles (1995)

  • Volume: 1995, page 1-15
  • ISSN: 0752-0360

How to cite

top

Rade, Johan. "Singular Yang-Mills connections." Journées équations aux dérivées partielles 1995 (1995): 1-15. <http://eudml.org/doc/93315>.

@article{Rade1995,
author = {Rade, Johan},
journal = {Journées équations aux dérivées partielles},
keywords = {singular anti-selfdual Yang-Mills fields; removability of singularities},
language = {eng},
pages = {1-15},
publisher = {Ecole polytechnique},
title = {Singular Yang-Mills connections},
url = {http://eudml.org/doc/93315},
volume = {1995},
year = {1995},
}

TY - JOUR
AU - Rade, Johan
TI - Singular Yang-Mills connections
JO - Journées équations aux dérivées partielles
PY - 1995
PB - Ecole polytechnique
VL - 1995
SP - 1
EP - 15
LA - eng
KW - singular anti-selfdual Yang-Mills fields; removability of singularities
UR - http://eudml.org/doc/93315
ER -

References

top
  1. [DK] S. K. Donaldson and P. Kronheimer, The geometry of four-manifolds, Oxford University Pr., Oxford, 1990. Zbl0820.57002MR92a:57036
  2. [K] P. B. Kronheimer, Embedded surfaces in 4-manifolds, in : Proceedings of the International Congress of Mathematicians (Kyoto 1990), Springer, Tokyo, Berlin, 1991, pp. 529-539. Zbl0746.53041MR93d:57066
  3. [KM1] P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces I, II, Topology 32 (1993), 773-826 ; 34 (1995), 37-97. Zbl0799.57007
  4. [KM2] P. B. Kronheimer and T. S. Mrowka, Recurrence relations and asymptotics for four-manifolds invariants, Bull. Amer. Math. Soc. 30 (1994), 215-221. Zbl0815.57010MR94k:57046
  5. [KN] S. Kobayashi and K. Nomizu, Foundations of Differential Geoemtry, vol. 1, Interscience, New York, 1963. Zbl0119.37502
  6. [L] H. B. Lawson, Jr., The theory of gauge fields in four dimensions, Amer. Math. Soc., Providence, Rhode Island, 1985. Zbl0597.53001
  7. [R1] J. Råde, Singular Yang-Mills fields. Local theory I, J. reine angew. Math. 452 (1994), 111-151. Zbl0795.53024MR95g:58053
  8. [R2] J. Råde, Singular Yang-Mills fields. Local theory II., J. reine angew. Math. 456 (1994), 197-219. Zbl0830.53024MR95j:58031
  9. [R3] J. Råde, Singular Yang-Mills fields. Global theory, International J. Math. 4 (1994), 491-521. Zbl0826.58010MR95g:53031
  10. [SS] L. M. Sibner and R. J. Sibner, Classification of singular Sobolev connections by their holonomy, Commun. Math. Phys. 144 (1992), 337-350. Zbl0747.53024MR93a:58042
  11. [T] C. H. Taubes, The Seiberg-Witten invariants, videotaped lectures, Amer. Math. Soc., Providence, Rhode Island, 1995. Zbl0873.57003MR96b:57039
  12. [U1] K. K. Uhlenbeck, Connections with Lp bounds on curvature, Comm. Math. Phys. 83 (1982), 31-42. Zbl0499.58019MR83e:53035
  13. [U2] K. K. Uhlenbeck, Removable singularities in Yang-Mills fields, Commun. Math. Phys. 83 (1982), 11-30. Zbl0491.58032MR83e:53034
  14. [U3] K. K. Uhlenbeck, The Chern classes of Sobolev connections, Commun. Math. Phys. 101 (1985), 449-457. Zbl0586.53018MR87f:58028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.