On local and global analytic and Gevrey hypoellipticity

Michael Christ

Journées équations aux dérivées partielles (1995)

  • Volume: 1995, page 1-7
  • ISSN: 0752-0360

How to cite

top

Christ, Michael. "On local and global analytic and Gevrey hypoellipticity." Journées équations aux dérivées partielles 1995 (1995): 1-7. <http://eudml.org/doc/93316>.

@article{Christ1995,
author = {Christ, Michael},
journal = {Journées équations aux dérivées partielles},
keywords = {Gevrey hypoellipticity; analytic hypoellipticity; nonlinear eigenvalue problems},
language = {eng},
pages = {1-7},
publisher = {Ecole polytechnique},
title = {On local and global analytic and Gevrey hypoellipticity},
url = {http://eudml.org/doc/93316},
volume = {1995},
year = {1995},
}

TY - JOUR
AU - Christ, Michael
TI - On local and global analytic and Gevrey hypoellipticity
JO - Journées équations aux dérivées partielles
PY - 1995
PB - Ecole polytechnique
VL - 1995
SP - 1
EP - 7
LA - eng
KW - Gevrey hypoellipticity; analytic hypoellipticity; nonlinear eigenvalue problems
UR - http://eudml.org/doc/93316
ER -

References

top
  1. [BG] M. S. Baouendi and C. Goulaouic, Nonanalytic-hypoellipticity for some degenerate elliptic operators, Bulletin AMS 78 (1972), 483-486. Zbl0276.35023MR45 #5567
  2. [C1] M. Christ, Analytic hypoellipticity, representations of nilpotent groups, and a nonlinear eigenvalue problem, Duke Math. J. 72 (1993), 595-639. Zbl0802.35025MR94k:35075
  3. [C2] M. Christ, A necessary condition for analytic hypoellipticity, Math. Research Letters 1 (1994), 241-248. Zbl0841.35026MR94m:35068
  4. [C3] M. Christ, Global analytic regularity in the presence of symmetry, Math. Research Letters 1 (1994), 599-563. Zbl0841.35027
  5. [C4] M. Christ, The Szegö projection need not preserve global analyticity, Annals of Math. (to appear). Zbl0851.32024
  6. [C5] M. Christ, Certain sums of squares of vector fields fail to be analytic hypoelliptic, Comm. Partial Differential Equations 16 (1991), 1695-1707. Zbl0762.35017MR92k:35056
  7. [C6] M. Christ, Gevrey and analytic hypoellipticity in dimension two, in preparation. 
  8. [CG] M. Christ and D. Geller, Counterexamples to analytic hypoellipticity for domains of finite type, Annals of Math. 235 (1992), 551-566. Zbl0758.35024MR93i:35034
  9. [CH] P. Cordaro and A. A. Himonas, Global analytic hypoellipticity of a class of degenerate elliptic operators on the torus, Mathematical Research Letters 1 (1994). Zbl0836.35036MR95j:35048
  10. [DZ] M. Derridj and C. Zuily, Régularité analytique et Gevrey pour des classes d'opérateurs elliptiques paraboliques dégénérés du second ordre, Astérisque 2,3 (1973), 371-381. Zbl0303.35027MR52 #14597
  11. [FS] A. Friedman and M. Shinbrot, Nonlinear eigenvalue problems, Acta Math. 121 (1968), 77-128. Zbl0162.45704
  12. [GS] A. Grigis and J. Sjöstrand, Front d'onde analytique et sommes de carrés de champs de vecteurs, Duke Math. J. 52 (1985), 35-51. Zbl0581.35009
  13. [HH] N. Hanges and A. A. Himonas, Singular solutions for sums of squares of vector fields, Comm. Partial Differential Equations 16 (1991), 1503-1511. Zbl0745.35011MR92i:35031
  14. [He] B. Helffer, Conditions nécessaires d'hypoanalyticité pour des opérateurs invariants à gauche homogènes sur un groupe nilpotent gradué, J. Diff. Eq. 44 (1982), 460-481. Zbl0458.35019MR84c:35026
  15. [H1] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin, 1983. Zbl0521.35002
  16. [H2] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. Zbl0156.10701MR36 #5526
  17. [Ke] M. V. Keldysh, On the completeness of the eigenfunctions of classes of non-selfadjoint linear operators, Russian Math. Surveys 26 (1971), 15-44. Zbl0235.47009
  18. [K] J. J. Kohn, Estimates for ∂b on pseudoconvex CR manifolds, Proc. Symp. Pure Math. 43 (1985), 207-217. Zbl0571.58027MR87c:32025
  19. [M1] G. Métivier, Une classe d'opérateurs non hypoélliptiques analytiques, Indiana Math. J. 29 (1980), 823-860. Zbl0455.35041MR82a:35029
  20. [M2] G. Métivier, Non-hypoellipticité analytique pour D2x + (x2 + y2)D2y, Comptes Rendus Acad. Sci. Paris 292 (1981), 401-404. Zbl0481.35033MR82b:35039
  21. [PR] Pham The Lai and D. Robert, Sur un problème aux valeurs propres non linéaire, Israel J. Math. 36 (1980), 169-186. Zbl0444.35065MR83b:35132
  22. [RS] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320. Zbl0346.35030MR55 #9171
  23. [Ta1] D. Tartakoff, Local analytic hypoellipticity for □b on non-degenerate Cauchy-Riemann manifolds, Proc. Nat. Acad. Sci. USA 75 (1978), 3027-3028. Zbl0384.35020MR80g:58045
  24. [Ta2] D. Tartakoff, On the local real analyticity of solutions to □b and the ∂-Neumann problem, Acta Math. 145 (1980), 117-204. Zbl0456.35019MR81k:35033
  25. [Tp] J.-M. Trepreau, Sur l'hypoellipticité analytique microlocale des opérateurs de type principal, Comm. Partial Differential Equations 9 (1984), 1119-1146. Zbl0566.35027MR86m:58144
  26. [Tr1] F. Treves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the ∂-Neumann problem, Comm. Partial Differential Equations 3 (1978), 475-642. Zbl0384.35055MR58 #11867
  27. [Tr2] F. Treves, Analytic-hypoelliptic partial differential equations of principal type, Comm. Pure Appl Math. 24 (1971), 537-570. Zbl0222.35014MR45 #5569
  28. [Y] C.-C. Yu, Nonlinear eigenvalues and analytic-hypoellipticity, 1995 UCLA Ph. D. dissertation (to appear). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.