Traces on the cone algebra with asymptotics

Elmar Schrohe

Journées équations aux dérivées partielles (1996)

  • Volume: 1996, page 1-11
  • ISSN: 0752-0360

How to cite

top

Schrohe, Elmar. "Traces on the cone algebra with asymptotics." Journées équations aux dérivées partielles 1996 (1996): 1-11. <http://eudml.org/doc/93323>.

@article{Schrohe1996,
author = {Schrohe, Elmar},
journal = {Journées équations aux dérivées partielles},
keywords = {Mellin calculus; pseudodifferential operators; manifold with conical singularities; noncommutative residue},
language = {eng},
pages = {1-11},
publisher = {Ecole polytechnique},
title = {Traces on the cone algebra with asymptotics},
url = {http://eudml.org/doc/93323},
volume = {1996},
year = {1996},
}

TY - JOUR
AU - Schrohe, Elmar
TI - Traces on the cone algebra with asymptotics
JO - Journées équations aux dérivées partielles
PY - 1996
PB - Ecole polytechnique
VL - 1996
SP - 1
EP - 11
LA - eng
KW - Mellin calculus; pseudodifferential operators; manifold with conical singularities; noncommutative residue
UR - http://eudml.org/doc/93323
ER -

References

top
  1. [1] M. Adler. On a trace functional for formal pseudo-differential operators and the symplectic structure of Korteweg-de Vries type equations. Inventiones Math., 50:219-248, 1979. Zbl0393.35058MR80i:58026
  2. [2] A. Connes. The action functional in non-commutative geometry. Comm. Math. Physics, 117:673-683, 1988. Zbl0658.53068MR91b:58246
  3. [3] A. Connes. Noncommutative Geometry. Academic Press, New York, London, Tokyo, 1994. Zbl0818.46076MR95j:46063
  4. [4] Yu. Egorov and B.-W. Schulze. Pseudo-Differential Operators, Singularities, Applications. Birkhäuser, Boston, Basel, Berlin (to appear). 
  5. [5] B. V. Fedosov, F. Golse, E. Leichtnam, and E. Schrohe. The noncommutative residue for manifolds with boundary. J. Funct. Anal. (to appear). Preprint MPI/94-140, Bonn 1994. Zbl0877.58005
  6. [6] B. V. Fedosov, F. Golse, E. Leichtnam, and E. Schrohe. Le résidu non commutatif pour les variétés à bord. C. R. Acad. Sc. Paris, 320:669-674, 1995. Zbl0841.58060MR95m:58120
  7. [7] V. Guillemin. A new proof of Weyl's formula on the asymptotic distribution of eigenvalues. Advances Math., 55:131 – 160, 1985. Zbl0559.58025MR86i:58135
  8. [8] Yu. I. Manin. Algebraic aspects of nonlinear differential equations. J. Sov. Math., 11:1–122, 1979. Zbl0419.35001
  9. [9] E. Schrohe and B.-W. Schulze. Boundary value problems in Boutet de Monvel's algebra for manifolds with conical singularities I. In: Pseudodifferential Operators and Mathematical Physics. Advances in Partial Differential Equations 1. Akademie Verlag, Berlin, 1994, 97 – 209. Zbl0827.35145MR95h:58136
  10. [10] E. Schrohe and B.-W. Schulze. Boundary value problems in Boutet de Monvel's algebra for manifolds with conical singularities II. Boundary Value Problems, Deformation Quantization, Schrödinger Operators. Advances in Partial Differential Equations 2. Akademie Verlag, Berlin 1995, 70 - 205. Zbl0847.35156MR97d:58195
  11. [11] B.-W. Schulze. Pseudo-Differential Boundary Value Problems, Conical Singularities and Asymptotics, Akademie Verlag, Berlin 1994. Zbl0810.35175MR95e:58172
  12. [12] M. Wodzicki. Spectral Asymmetry and Noncommutative Residue. Thesis, Stekhlov Institute of Mathematics, Moscow, 1984. 
  13. [13] M. Wodzicki. Noncommutative residue, Chapter I. Fundamentals. In Yu. I. Manin, editor, K-theory, Arithmetic and Geometry, volume 1289 of Springer LN Math., pages 320-399. Springer, Berlin, Heidelberg, New York, 1987. Zbl0649.58033MR90a:58175

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.