On the regularity properties of non-linear wave equations

S. Klainerman; Matei Machedon

Journées équations aux dérivées partielles (1997)

  • Volume: 87, Issue: 3, page 1-8
  • ISSN: 0752-0360

How to cite

top

Klainerman, S., and Machedon, Matei. "On the regularity properties of non-linear wave equations." Journées équations aux dérivées partielles 87.3 (1997): 1-8. <http://eudml.org/doc/93335>.

@article{Klainerman1997,
author = {Klainerman, S., Machedon, Matei},
journal = {Journées équations aux dérivées partielles},
keywords = {nonlinear wave equation; nonlocal operators; Fourier analysis techniques},
language = {eng},
number = {3},
pages = {1-8},
publisher = {Ecole polytechnique},
title = {On the regularity properties of non-linear wave equations},
url = {http://eudml.org/doc/93335},
volume = {87},
year = {1997},
}

TY - JOUR
AU - Klainerman, S.
AU - Machedon, Matei
TI - On the regularity properties of non-linear wave equations
JO - Journées équations aux dérivées partielles
PY - 1997
PB - Ecole polytechnique
VL - 87
IS - 3
SP - 1
EP - 8
LA - eng
KW - nonlinear wave equation; nonlocal operators; Fourier analysis techniques
UR - http://eudml.org/doc/93335
ER -

References

top
  1. [Be] M. BealsSelf-spreading and strength of singularities for solutions to semi-linear wave equations, Annals of Math 118, 1983 no1 187-214. Zbl0522.35064MR85c:35057
  2. [B] J. BourgainFourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, I, II, Geom. Funct. Analysis 3, (1993), 107-156, 202-262. Zbl0787.35097MR95d:35160a
  3. [G] M. Grillakis, A priori estimates and regularity of non-linear waves, Proceedings of ICM, Zurich, 1994. 
  4. [Ke] M. Keel, to appear in Comm. in PDE. 
  5. [K-P-V] K. Kenig, G. Ponce, L. VegaThe Cauchy problem for the Korteveg-De Vries equation in Sobolev spaces of negative indices, Duke Math Journal 71, no 1, pp 1-21 (1994). Zbl0787.35090
  6. [K-M1] S. Klainerman and M. MachedonSpace-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math, vol XLVI, 1221-1268 (1993). Zbl0803.35095MR94h:35137
  7. [K-M2], S. Klainerman and M. MachedonOn the Maxwell-Klein-Gordon equation with finite energy, Duke Math Journal, vol. 74, no. 1 (1994). Zbl0818.35123MR95f:35210
  8. [K-M3] S. Klainerman and M. MachedonFinite energy solutions of the Yang-Mills equations in R3+1, Annals of Math. 142, 39-119 (1995). Zbl0827.53056MR96i:58167
  9. [K-M4] S. Klainerman and M. MachedonSmoothing estimates for null forms and applications, Duke Math Journal, 81, no 1, in celebration of John Nash, 99-133 (1996) Also 1994 IMRN announcement. Zbl0909.35094MR97h:35022
  10. [K-M5] S. Klainerman and M. Machedon with appendices by J. Bourgain and D. Tataru, Remark on the Strichartz inequality, International Math Research Notices no 5, 201-220 (1996). Zbl0853.35062MR97g:46037
  11. [K-M6] S. Klainerman and M. MachedonEstimates for null forms and the spaces Hs,δ International Math Research Notices no 17, 853-865 (1996). Zbl0909.35095MR98j:46028
  12. [K-M7] S. Klainerman and M. MachedonOn the regularity properties of a model problem related to wave maps, accepted, Duke Math Journal. Zbl0878.35075
  13. [K-M8] S. Klainerman and M. MachedonOn the optimal local regularity for gauge field theories, accepted, Differential and Integral Equations. Zbl0940.35011
  14. [K-S] S. Klainerman, S. SelbergRemark on the optimal regularity for equations of Wave Maps type, to appear in Comm PDE. Zbl0884.35102
  15. [K-T] S. Klainerman and D. Tataru, On the local regularity for Yang-Mills equations in R4 + 1, preprint. Zbl0924.58010
  16. [L] H. LindbladCounterexamples to local existence for semi-linear wave equations, Amer. J. Math, 118 (1996) no 1 1-16. Zbl0855.35080MR97b:35124
  17. [S] J. Shatah WeakSolutions and development of singularities for the SU (2)σ-Model, Comm. Pure Appl. Math, vol XLI 459-469 (1988). Zbl0686.35081MR89f:58044
  18. [Sch-So] W. Schlag, C SoggeLocal smoothing estimates related to the circular maximal theorem. Math Res. Letters 4 (1997) no 1-15. Zbl0877.42006MR98e:42018
  19. [So] C. SoggeOn local existence for non-linear wave equation satisfying variable coefficient null condition, Comm PDE 18 (1993) n0o 11 1795-1821. Zbl0792.35125MR94m:35199
  20. [T] D. Tataru, The Xsθ spaces and unique continuation for solutions to the semi-linear wave equation, Comm. PDE, 21 (56), 841-887 (1996). Zbl0853.35017MR97i:35012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.