Normal form of the wave group and inverse spectral theory
Journées équations aux dérivées partielles (1998)
- page 1-18
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topReferences
top- [B.B] V.M.Babic, V.S. Buldyrev, Short-Wavelength Diffraction Theory, Springer Series on Wave Phenomena 4, Springer-Verlag, New York (1991) Zbl0742.35002MR94f:78004
- [CV.1] Y. Colin de Verdière, Sur les longueurs des trajectoires périodiques d'un billard, In : P. Dazord and N. Desolneux-Moulis (eds.) Géométrie Symplectique et de Contact : Autour du Théorème de Poincaré-Birkhoff. Travaux en Cours, Sém. Sud-Rhodanien de Géométrie III Paris : Herman (1984), 122-139. Zbl0599.58039MR86a:58078
- [CV.2] Y. Colin de Verdière, Spectre conjoint d'opérateurs pseudo-différentiels qui commutent II. Le cas intégrable, Math.Zeit. 171 (1980), 51-73. Zbl0478.35073MR81i:58046
- [CV.3] Y. Colin de Verdière, Quasi-modes sur les variétés Riemanniennes, Inv. Math 43 (1977), 15-52. Zbl0449.53040MR58 #18615
- [D.G] J.J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Inv. Math. 24 (1975), 39-80. Zbl0307.35071MR53 #9307
- [F.Z] G. Forni and S.Zelditch, Inverse spectral problem for surfaces of revolution II (in preparation).
- [F.G] J.P. Francoise and V. Guillemin, On the period spectrum of a symplectic mapping, J. Fun. Anal. 100, (1991) 317-358. Zbl0739.58020MR92j:58083
- [Go] C.Gordon, CBMS Lectures (1996).
- [G.1] V. Guillemin, Wave trace invariants, Duke Math. J. 83 (1996), 287-352. Zbl0858.58051MR97f:58131
- [G.2] V. Guillemin, Wave-trace invariants and a theorem of Zelditch, Duke Int.Math.Res.Not. 12 (1993), 303-308. Zbl0798.58073MR95f:58077
- [G.M] V. Guillemin and R.B.Melrose, The Poisson summation formula for manifolds with boundary, Adv. in Math.32 (1979), 204-232. Zbl0421.35082MR80j:58066
- [HoI-IV] L.Hörmander, Theory of Linear Partial Differential Operators I-IV, Springer-Verlag, New York (1985).
- [Kac] M.Kac, On applying mathematics : reflections and examples, in Mark Kack : Probability, Number Theory, and Statistical Physics, K.Baclawski and M.D.Donskder (eds.), MIT Press, Cambridge (1979). Zbl0275.00009
- [M.M] S.Marvizi and R.B.Melrose, Spectral invariants of convex planar regions, J. Diff.Geom. 17 (1982), 475-502. Zbl0492.53033MR85d:58084
- [M] R.B. Melrose, The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two, Journal D'Analyse Math. XLIV (1984/1985), 134-182. Zbl0599.35139MR87e:58199
- [P] G.Popov, Length spectrum invariants of Riemannian manifolds, Math.Zeit. 213 (1993), 311-351. Zbl0804.53068MR94g:58174
- [Sj] J.Sjöstrand, Semi-excited states in nondegenerate potential wells, Asym.An.6 (1992) 29-43. Zbl0782.35050MR93m:35052
- [W] A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J. 44 (1977), 883-892. Zbl0385.58013MR58 #2919
- [Z.1] S.Zelditch, Wave invariants at elliptic closed geodesics, Geom.Anal.Fun.Anal. 7 (1997), 145-213. Zbl0876.58010MR98f:58191
- [Z.2] S.Zelditch, Wave invariants for non-degenerate closed geodesics, Geom.Anal.Fun.Anal. 8 (1998), 179-217. Zbl0908.58022MR98m:58136
- [Z.3] S.Zelditch, Inverse spectral problem for surfaces of revolution (to appear in J.Diff.Geom.). Zbl0938.58027