Exact fundamental solutions
Journées équations aux dérivées partielles (1998)
- page 1-9
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topBeals, Richard. "Solutions fondamentales exactes." Journées équations aux dérivées partielles (1998): 1-9. <http://eudml.org/doc/93358>.
@article{Beals1998,
author = {Beals, Richard},
journal = {Journées équations aux dérivées partielles},
language = {fre},
pages = {1-9},
publisher = {Université de Nantes},
title = {Solutions fondamentales exactes},
url = {http://eudml.org/doc/93358},
year = {1998},
}
TY - JOUR
AU - Beals, Richard
TI - Solutions fondamentales exactes
JO - Journées équations aux dérivées partielles
PY - 1998
PB - Université de Nantes
SP - 1
EP - 9
LA - fre
UR - http://eudml.org/doc/93358
ER -
References
top- [1] J. AARÃO, A transport equation of mixed type, Dissertation, Yale University 1997. Zbl0920.35155
- [2] M. S. BAOUENDI AND C. GOULAOUIC, Non-analytic hypoellipticity for some degenerate elliptic operators, Bull. Amer. Math. Soc. 78 (1972), 483-486. Zbl0276.35023MR45 #5567
- [3] R. BEALS, A note on fundamental solutions, submitted. Zbl0923.35137
- [4] R. BEALS, B. GAVEAU, AND P. C. GREINER, On a geometric formula for the fundamental solutions of subelliptic laplacians, Math. Nachrichten 181 (1996), 81-163. Zbl0864.35005MR97h:35029
- [5] R. BEALS, B. GAVEAU, AND P. C. GREINER, Uniform hypoelliptic Green's functions, J. Math. Pures Appl., to appear. Zbl0915.35029
- [6] R. BEALS, B. GAVEAU, P. C. GREINER, AND Y. KANNAI, Exact fundamental solutions for a class of degenerate elliptic operators, in preparation. Zbl0933.35041
- [7] S. CHANDRASEKHAR, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15 (1943), 1-89. Zbl0061.46403MR4,227e
- [8] G. FOLLAND, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973), 373-376. Zbl0256.35020MR47 #3816
- [9] G. FOLLAND AND E. M. STEIN, Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522. Zbl0293.35012MR51 #3719
- [10] G. FRANCSICS AND N. HANGES, Explicit formulas for the Szegö kernel on certain weakly pseudoconvex domains, Proc. Amer. Math. Soc. 123 (1995), 3161-3168. Zbl0848.32018MR95m:32035
- [11] B. GAVEAU, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), 95-153. Zbl0366.22010MR57 #1574
- [12] P. C. GREINER, A fundamental solution for a nonelliptic partial differential operator, Can. J. Math. 31 (1979), 1107-1120. Zbl0475.35003MR81g:35096
- [13] P. C. GREINER AND E. M. STEIN, On the solvability of some differential operators of type ʬb, Ann. Scuola Norm. Pisa Cl. Sci. 4 (1978), 106-165. Zbl0434.35007MR84d:35111
- [14] A. HULANICKI, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math. 56 (1976), 165-173. Zbl0336.22007MR54 #6298
- [15] A. KLINGLER, New derivation of the Heisenberg kernel, Comm. PDE 22 (1997), 2051-2060. Zbl0896.58068MR99h:35026
- [16] A. N. KOLMOGOROV, Zufällige Bewegungen, Acta Math. 35 (1934), 116-117. Zbl0008.39906JFM60.1159.01
- [17] A. NAGEL, Vector fields and nonisotropic metrics. in «Beijing Lectures in Harmonic Analysis,» Annals of Math. Studies 112, Princeton Univ. Press, Princeton 1986, pp. 241-306. Zbl0607.35011MR88f:42045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.