Exact fundamental solutions

Richard Beals

Journées équations aux dérivées partielles (1998)

  • page 1-9
  • ISSN: 0752-0360


Exact fundamental solutions are known for operators of various types. We indicate a general approach that gives various old and new fundamental solutions for operators with double characteristics. The solutions allow one to read off detailed behavior, such as the presence or absence of analytic hypoellipticity. Recent results for operators with multiple characteristics are also described.

How to cite


Beals, Richard. "Solutions fondamentales exactes." Journées équations aux dérivées partielles (1998): 1-9. <http://eudml.org/doc/93358>.

author = {Beals, Richard},
journal = {Journées équations aux dérivées partielles},
language = {fre},
pages = {1-9},
publisher = {Université de Nantes},
title = {Solutions fondamentales exactes},
url = {http://eudml.org/doc/93358},
year = {1998},

AU - Beals, Richard
TI - Solutions fondamentales exactes
JO - Journées équations aux dérivées partielles
PY - 1998
PB - Université de Nantes
SP - 1
EP - 9
LA - fre
UR - http://eudml.org/doc/93358
ER -


  1. [1] J. AARÃO, A transport equation of mixed type, Dissertation, Yale University 1997. Zbl0920.35155
  2. [2] M. S. BAOUENDI AND C. GOULAOUIC, Non-analytic hypoellipticity for some degenerate elliptic operators, Bull. Amer. Math. Soc. 78 (1972), 483-486. Zbl0276.35023MR45 #5567
  3. [3] R. BEALS, A note on fundamental solutions, submitted. Zbl0923.35137
  4. [4] R. BEALS, B. GAVEAU, AND P. C. GREINER, On a geometric formula for the fundamental solutions of subelliptic laplacians, Math. Nachrichten 181 (1996), 81-163. Zbl0864.35005MR97h:35029
  5. [5] R. BEALS, B. GAVEAU, AND P. C. GREINER, Uniform hypoelliptic Green's functions, J. Math. Pures Appl., to appear. Zbl0915.35029
  6. [6] R. BEALS, B. GAVEAU, P. C. GREINER, AND Y. KANNAI, Exact fundamental solutions for a class of degenerate elliptic operators, in preparation. Zbl0933.35041
  7. [7] S. CHANDRASEKHAR, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15 (1943), 1-89. Zbl0061.46403MR4,227e
  8. [8] G. FOLLAND, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973), 373-376. Zbl0256.35020MR47 #3816
  9. [9] G. FOLLAND AND E. M. STEIN, Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522. Zbl0293.35012MR51 #3719
  10. [10] G. FRANCSICS AND N. HANGES, Explicit formulas for the Szegö kernel on certain weakly pseudoconvex domains, Proc. Amer. Math. Soc. 123 (1995), 3161-3168. Zbl0848.32018MR95m:32035
  11. [11] B. GAVEAU, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), 95-153. Zbl0366.22010MR57 #1574
  12. [12] P. C. GREINER, A fundamental solution for a nonelliptic partial differential operator, Can. J. Math. 31 (1979), 1107-1120. Zbl0475.35003MR81g:35096
  13. [13] P. C. GREINER AND E. M. STEIN, On the solvability of some differential operators of type ʬb, Ann. Scuola Norm. Pisa Cl. Sci. 4 (1978), 106-165. Zbl0434.35007MR84d:35111
  14. [14] A. HULANICKI, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math. 56 (1976), 165-173. Zbl0336.22007MR54 #6298
  15. [15] A. KLINGLER, New derivation of the Heisenberg kernel, Comm. PDE 22 (1997), 2051-2060. Zbl0896.58068MR99h:35026
  16. [16] A. N. KOLMOGOROV, Zufällige Bewegungen, Acta Math. 35 (1934), 116-117. Zbl0008.39906JFM60.1159.01
  17. [17] A. NAGEL, Vector fields and nonisotropic metrics. in «Beijing Lectures in Harmonic Analysis,» Annals of Math. Studies 112, Princeton Univ. Press, Princeton 1986, pp. 241-306. Zbl0607.35011MR88f:42045

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.