Accurate Spectral Asymptotics for periodic operators
Journées équations aux dérivées partielles (1999)
- page 1-11
 - ISSN: 0752-0360
 
Access Full Article
topAbstract
topHow to cite
topIvrii, Victor. "Accurate Spectral Asymptotics for periodic operators." Journées équations aux dérivées partielles (1999): 1-11. <http://eudml.org/doc/93382>.
@article{Ivrii1999,
	abstract = {Asymptotics with sharp remainder estimates are recovered for number $\{\mathbf \{N\}\}(\tau )$ of eigenvalues of operator $A(x,D)-tW(x,x)$ crossing level $E$ as $t$ runs from $0$ to $\tau $, $\tau \rightarrow \infty $. Here $A$ is periodic matrix operator, matrix $W$ is positive, periodic with respect to first copy of $x$ and decaying as second copy of $x$ goes to infinity, $E$ either belongs to a spectral gap of $A$ or is one its ends. These problems are first treated in papers of M. Sh. Birman, M. Sh. Birman-A. Laptev and M. Sh. Birman-T. Suslina.},
	author = {Ivrii, Victor},
	journal = {Journées équations aux dérivées partielles},
	language = {eng},
	pages = {1-11},
	publisher = {Université de Nantes},
	title = {Accurate Spectral Asymptotics for periodic operators},
	url = {http://eudml.org/doc/93382},
	year = {1999},
}
TY  - JOUR
AU  - Ivrii, Victor
TI  - Accurate Spectral Asymptotics for periodic operators
JO  - Journées équations aux dérivées partielles
PY  - 1999
PB  - Université de Nantes
SP  - 1
EP  - 11
AB  - Asymptotics with sharp remainder estimates are recovered for number ${\mathbf {N}}(\tau )$ of eigenvalues of operator $A(x,D)-tW(x,x)$ crossing level $E$ as $t$ runs from $0$ to $\tau $, $\tau \rightarrow \infty $. Here $A$ is periodic matrix operator, matrix $W$ is positive, periodic with respect to first copy of $x$ and decaying as second copy of $x$ goes to infinity, $E$ either belongs to a spectral gap of $A$ or is one its ends. These problems are first treated in papers of M. Sh. Birman, M. Sh. Birman-A. Laptev and M. Sh. Birman-T. Suslina.
LA  - eng
UR  - http://eudml.org/doc/93382
ER  - 
References
top- [B1] M. BIRMAN. The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regularperturbations. Boundary value problems, Schrödinger operators, deformation quantization, Math. Top., 8, Akademie Verlag, Berlin, 1995, pp. 334-352. Zbl0848.47032MR97d:47055
 - [B2] M. BIRMAN. The discrete spectrum of the periodic Schrödinger operator perturbed by a decreasing potential. St. Petersburg Math. J., 8 (1997), no. 1, pp. 1-14. Zbl0866.35087MR97h:47047
 - [B3] M. BIRMAN. Discrete spectrum in the gaps of the perturbed periodic Schrödinger operator. II. Non-regular perturbations. St. Petersburg Math. J., 9 (1998), no. 6, pp. 1073-1095. Zbl0911.35082MR99h:47054
 - [BL1] M. BIRMAN, A. LAPTEV. The negative discrete spectrum of a two-dimensional Schrödinger operator. Comm. Pure Appl. Math., 49 (1996), no. 9, pp. 967-997. Zbl0864.35080MR97i:35131
 - [BL2] M. BIRMAN, A. LAPTEV. «Non-standard» spectral asymptotics for a two-dimensional Schrödinger operator. Centre de Recherches Mathematiques, CRM Proceedings and Lecture Notes, 12 (1997), pp. 9-16. Zbl0910.35086MR1479234
 - [BLS] M. BIRMAN, A. LAPTEV, T. SUSLINA. Discrete spectrum of the twodimensional periodic elliptic second order operator perturbed by a decreasing potential. I. Semiinfinite gap (in preparation). Zbl1070.47041
 - [BS] M. BIRMAN, T. SUSLINA. Birman, Suslina. Discrete spectrum of the twodimensional periodic elliptic second order operator perturbed by a decreasing potential. II. Internal gaps (in preparation). Zbl1070.47041
 - [Ivr1] V. IVRII. Microlocal Analysis and Precise Spectral Asymptotics. Springer-Verlag, SMM, 1998, 731+15 pp. Zbl0906.35003MR99e:58193
 - [Ivr2] V. IVRII. Accurate Spectral Asymptotics for Neumann Laplacian in domains with cusps (to appear in Applicable Analysis).
 - [JMS] V. JAKŠIĆ, S. MOLČANOV and B. SIMON. Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps. J. Func. Anal., 106, (1992), pp. 59-79. Zbl0783.35040MR93f:35165
 - [Sol1] M. SOLOMYAK. On the negative discrete spectrum of the operator —ΔN —αV for a class of unbounded domains in Rd, CRM Proceedings and Lecture Notes, Centre de Recherches Mathematiques, 12, (1997), pp. 283-296. Zbl0888.35075MR98i:35138
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.