Domain perturbations, capacity and shift of eigenvalues

André Noll

Journées équations aux dérivées partielles (1999)

  • page 1-10
  • ISSN: 0752-0360

Abstract

top
After introducing the notion of capacity in a general Hilbert space setting we look at the spectral bound of an arbitrary self-adjoint and semi-bounded operator H . If H is subjected to a domain perturbation the spectrum is shifted to the right. We show that the magnitude of this shift can be estimated in terms of the capacity. We improve the upper bound on the shift which was given in Capacity in abstract Hilbert spaces and applications to higher order differential operators (Comm. P. D. E., 24:759–775, 1999) and obtain a lower bound which leads to a generalization of Thirring’s inequality if the underlying Hilbert space is an L 2 -space. Moreover, a similar capacitary upper bound for the second eigenvalue is established. The results are finally applied to higher-order partial differential operators.

How to cite

top

Noll, André. "Domain perturbations, capacity and shift of eigenvalues." Journées équations aux dérivées partielles (1999): 1-10. <http://eudml.org/doc/93385>.

@article{Noll1999,
abstract = {After introducing the notion of capacity in a general Hilbert space setting we look at the spectral bound of an arbitrary self-adjoint and semi-bounded operator $H$. If $H$ is subjected to a domain perturbation the spectrum is shifted to the right. We show that the magnitude of this shift can be estimated in terms of the capacity. We improve the upper bound on the shift which was given in Capacity in abstract Hilbert spaces and applications to higher order differential operators (Comm. P. D. E., 24:759–775, 1999) and obtain a lower bound which leads to a generalization of Thirring’s inequality if the underlying Hilbert space is an $L^2$-space. Moreover, a similar capacitary upper bound for the second eigenvalue is established. The results are finally applied to higher-order partial differential operators.},
author = {Noll, André},
journal = {Journées équations aux dérivées partielles},
keywords = {capacity; Hilbert space; spectral bound; domain perturbation; shift; Thirring's inequality; second eigenvalue; higher-order partial differential operators},
language = {eng},
pages = {1-10},
publisher = {Université de Nantes},
title = {Domain perturbations, capacity and shift of eigenvalues},
url = {http://eudml.org/doc/93385},
year = {1999},
}

TY - JOUR
AU - Noll, André
TI - Domain perturbations, capacity and shift of eigenvalues
JO - Journées équations aux dérivées partielles
PY - 1999
PB - Université de Nantes
SP - 1
EP - 10
AB - After introducing the notion of capacity in a general Hilbert space setting we look at the spectral bound of an arbitrary self-adjoint and semi-bounded operator $H$. If $H$ is subjected to a domain perturbation the spectrum is shifted to the right. We show that the magnitude of this shift can be estimated in terms of the capacity. We improve the upper bound on the shift which was given in Capacity in abstract Hilbert spaces and applications to higher order differential operators (Comm. P. D. E., 24:759–775, 1999) and obtain a lower bound which leads to a generalization of Thirring’s inequality if the underlying Hilbert space is an $L^2$-space. Moreover, a similar capacitary upper bound for the second eigenvalue is established. The results are finally applied to higher-order partial differential operators.
LA - eng
KW - capacity; Hilbert space; spectral bound; domain perturbation; shift; Thirring's inequality; second eigenvalue; higher-order partial differential operators
UR - http://eudml.org/doc/93385
ER -

References

top
  1. [Agm65] S. Agmon. Elliptic Boundary Value Problems. Van Nostrand Mathematical Studies, 1965. Zbl0142.37401MR31 #2504
  2. [AM95] W. Arendt and S. Monniaux. Domain perturbation for the first eigenvalue of the Dirichlet Schrödinger operator. Oper. Theory Adv. Appl., 78 : 9-19, 1995. Zbl0842.35087MR97d:35157
  3. [CF78] I. Chavel and E.A. Feldman. Spectra of domains in compact manifolds. J. Funct. Anal., 30 : 198-222, 1978. Zbl0392.58016MR80c:58027
  4. [CF88] I. Chavel and E.A. Feldman. Spectra of manifolds less a small domain. Duke Math. J., 56 : 399-414, 1988. Zbl0645.58042MR89h:58195
  5. [Cou95] G. Courtois. Spectrum of manifolds with holes. J. Funct. Anal., 134 : 194-221, 1995. Zbl0847.58076MR97b:58142
  6. [Dava] E.B. Davies. Lp spectral theory of higher order elliptic differential operators. preprint 1996. 
  7. [Davb] E.B. Davies. Uniformly elliptic operators with measurable coefficients. preprint 1997. 
  8. [DMN97] M. Demuth, I. McGillivray, and A. Noll. Capacity and spectral theory. In M. Demuth, E. Schrohe, B.-W. Schulze, and J. Sjöstrand, editors, Spectral Theory, Microlocal Analysis, Singular Manifolds, volume 14 of Advances in Partial Differential Equations, pages 12-77. Akademie Verlag, Berlin, 1997. Zbl1062.31500MR99f:31007
  9. [FOT94] M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet Forms and Symmetric Markov Processes, volume 19 of Studies in Mathematics. Walter de Gruyter Co, Berlin, 1994. Zbl0838.31001MR96f:60126
  10. [GZ94] F. Gesztesy and Z. Zhao. Domain perturbations, Brownian motion and ground states of Dirichlet Schrödinger operators. Math. Z., 215 : 143-150, 1994. Zbl0791.60072MR95g:60098
  11. [Hör83a] L. Hörmander. The Analysis of Linear Partial Differential Operators I. Grundlehren der mathematischen Wissenschaften. Springer Verlag, Berlin-New York, 1983. Zbl0521.35002
  12. [Hör83b] L. Hörmander. The Analysis of Linear Partial Differential Operators II. Grundlehren der mathematischen Wissenschaften. Springer Verlag, Berlin-New York, 1983. Zbl0521.35002
  13. [Joh49] F. John. On linear partial differential equations with analytic coefficients. Commun. Pure Appl. Math., 2 : 209-253, 1949. Zbl0035.34601MR12,185d
  14. [Maz85] V.G. Maz'ja. Sobolev Spaces. Springer Series in Soviet Mathematics. Springer Verlag Berlin, New York, 1985. MR87g:46056
  15. [McG96] I. McGillivray. Capacitary estimates for Dirichlet eigenvalues. J. Funct. Anal., 139 : 244-259, 1996. Zbl0896.47017MR97f:31024
  16. [MR84] P.J. McKenna and M. Rao. Lower bounds for the first eigenvalue of the Laplacian with Dirichlet boundary conditions and a theorem of Hayman. Appl. Anal., 18 : 55-66, 1984. Zbl0579.35064MR86c:49051
  17. [Nol97] A. Noll. A generalization of Dynkin's formula and capacitary estimates for semibounded operators. In M. Demuth and B.-W. Schulze, editors, Differential Equations, Asymptotic Analysis and Mathematical Physics, volume 100 of Mathematical Research, pages 252-259. Akademie Verlag, Berlin, 1997. Zbl0880.35087MR98e:31010
  18. [Nol98] A. Noll. Domain perturbations, shift of eigenvalues and capacity. Technical report, TU Clausthal, 1998. Submitted to Comm. P. D. E. Zbl1026.47501
  19. [Nol99] A. Noll. Capacity in abstract Hilbert spaces and applications to higher order differential operators. Comm. P. D. E., 24 : 759-775, 1999. Zbl0929.47023MR2000a:47030
  20. [Oza81] S. Ozawa. Singular variation of domains and eigenvalues of the Laplacian. Duke Math. J., 48(4) : 767-778, 1981. Zbl0483.35064MR86k:35117
  21. [Oza82] S. Ozawa. The first eigenvalue of the Laplacian on two-dimensional manifolds. Tohoku Math. J., 34 : 7-14, 1982. Zbl0486.53035MR83g:58073
  22. [Oza83] S. Ozawa. Electrostatic capacity and eigenvalues of the Laplacian. J. Fac. Sci. Univ. Tokyo, 30 : 53-62, 1983. Zbl0531.35061MR84m:35093
  23. [Rau75] J. Rauch. The mathematical theory of crushed ice. In Partial Differential Equations and Related Topics, volume 446 of Lect. Notes in Math., pages 370-379. Springer, Berlin, 1975. Zbl0312.35002MR55 #893
  24. [RT75a] J. Rauch and M. Taylor. Electrostatic screening. J. Math. Phys., 16 : 284-288, 1975. MR52 #3716
  25. [RT75b] J. Rauch and M. Taylor. Potential and scattering theory on wildly perturbed domains. J. Funct. Anal., 18 : 27-59, 1975. Zbl0293.35056MR51 #13476
  26. [Szn98] A.-S. Sznitman. Brownian motion, obstacles and random media. Springer Monographs in Mathematics. Berlin. Springer-Verlag, 1998. Zbl0973.60003MR2001h:60147
  27. [Tay76] M. Taylor. Scattering length and perturbations of -Δ by positive potentials. J. Math. Anal. Appl., 53:291-312, 1976. Zbl0336.31005MR57 #17028
  28. [Tay79] M. Taylor. Estimate on the fundamental frequency of a drum. Duke Math. J., 46:447-453, 1979. Zbl0418.35068MR81g:35097

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.