Solvability of second-order left-invariant differential operators on the Heisenberg group

Fulvio Ricci

Journées équations aux dérivées partielles (2000)

  • page 1-10
  • ISSN: 0752-0360

How to cite

top

Ricci, Fulvio. "Solvability of second-order left-invariant differential operators on the Heisenberg group." Journées équations aux dérivées partielles (2000): 1-10. <http://eudml.org/doc/93392>.

@article{Ricci2000,
abstract = {},
author = {Ricci, Fulvio},
journal = {Journées équations aux dérivées partielles},
keywords = {second-order left-invariant differential operators; solvability of operators; Heisenberg group},
language = {eng},
pages = {1-10},
publisher = {Université de Nantes},
title = {Solvability of second-order left-invariant differential operators on the Heisenberg group},
url = {http://eudml.org/doc/93392},
year = {2000},
}

TY - JOUR
AU - Ricci, Fulvio
TI - Solvability of second-order left-invariant differential operators on the Heisenberg group
JO - Journées équations aux dérivées partielles
PY - 2000
PB - Université de Nantes
SP - 1
EP - 10
AB -
LA - eng
KW - second-order left-invariant differential operators; solvability of operators; Heisenberg group
UR - http://eudml.org/doc/93392
ER -

References

top
  1. [BG] R. Beals and P.C. Greiner, Calculus on heisenberg manifolds, Annals of Math. Studies, Princeton Univ. Press, 1988. Zbl0654.58033MR89m:35223
  2. [DPR] F. De Mari, M.M. Peloso, and F. Ricci, Analysis of second order differential operators with complex coefficients on the heisenberg group, J. Reine Angew. Math. 464 (1995), 67-96. Zbl0826.43004MR96f:22011
  3. [Fo] G. Folland, Harmonic analysis in phase space, Annals of Math. Studies, Princeton Univ. Press, 1989. Zbl0682.43001MR92k:22017
  4. [FS] G. Folland and E.M. Stein, Estimates for the ∂b complex and analysis on the heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522. Zbl0293.35012MR51 #3719
  5. [G] A. Grigis, Hypoellipticité pour une classe d'opérateurs pseudodifférentiels à caractéristiques doubles et paramétrix associées, C.R. acad. Sci. Paris A280 (1975), 1063-1065. Zbl0298.35014MR53 #4149
  6. [Hw] R. Howe, The oscillator semigroup, Proc. Symp. Pure Appl. Math. 48 (1988), 61-132. Zbl0687.47034MR90f:22014
  7. [Hö1] L. Hörmander, A class of hypoelliptic pseudodifferential operators with double characteristics, Math. Ann. 217 (1975), 165-188. Zbl0306.35032MR51 #13774
  8. [Hö2] L. Hörmander, Symplectic classification of quadratic forms, and general mehler formulas, Math. Zeitschr. 219 (1995), 413-449. Zbl0829.35150MR96c:58172
  9. [KM] G. Karadzhov and D. Müller, Local solvability for a class of second order complex coefficient differential operators on the heisenberg group h2, preprint Mathematisches Seminar, Kiel (1999). 
  10. [MPR1] D. Müller, M.M. Peloso, and F. Ricci, On the solvability of homogeneous left-invariant differential operators on the heisenberg group, J. Funct. Anal. 148 (1997), 368-383. Zbl0887.43004MR98k:35024
  11. [MPR2] D. Müller, M.M. Peloso, and F. Ricci, On local solvability for complex coefficient differential operators on the heisenberg group, J. Reine Angew. Math. 513 (1999), 181-234. Zbl0937.43003MR2000h:35003
  12. [MR1] D. Müller and F. Ricci, Analysis of second order differential operators on the heisenberg group. i, Invent. Math. 101 (1990), 545-582. Zbl0742.43006MR92d:22011
  13. [MR2] D. Müller and F. Ricci, Analysis of second order differential operators on the heisenberg group. ii, J. Funct. Anal. 108 (1992), 296-346. Zbl0790.43011MR93j:22019
  14. [MT] D. Müller and C. Thiele, Normal forms for involutive complex hamiltonian matrices under the real symplectic group, J. Reine Angew. Math. 513 (1999), 97-114. Zbl0932.15006MR2000h:15017
  15. [MZ] D. Müller and Z. Zhang, Local solvability for positive combinations of generalized sub-laplacians on the heisenberg group, preprint Mathematisches Seminar, Kiel (1999). Zbl0974.22006
  16. [P] R. Penney, Non-elliptic laplace equations on nilpotent lie groups, Ann. Math. 119 (1984), 309-385. Zbl0552.22004MR86e:22012
  17. [Sj] Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. för Math. 12 (1974), 85-130. Zbl0317.35076MR50 #5236

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.