Refined Kato inequalities in riemannian geometry
Journées équations aux dérivées partielles (2000)
- page 1-11
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topHerzlich, Marc. "Refined Kato inequalities in riemannian geometry." Journées équations aux dérivées partielles (2000): 1-11. <http://eudml.org/doc/93403>.
@article{Herzlich2000,
abstract = {We describe the recent joint work of the author with David M. J. Calderbank and Paul Gauduchon on refined Kato inequalities for sections of vector bundles living in the kernel of natural first-order elliptic operators.},
author = {Herzlich, Marc},
journal = {Journées équations aux dérivées partielles},
keywords = {first-order elliptic operator; Kato inequality},
language = {eng},
pages = {1-11},
publisher = {Université de Nantes},
title = {Refined Kato inequalities in riemannian geometry},
url = {http://eudml.org/doc/93403},
year = {2000},
}
TY - JOUR
AU - Herzlich, Marc
TI - Refined Kato inequalities in riemannian geometry
JO - Journées équations aux dérivées partielles
PY - 2000
PB - Université de Nantes
SP - 1
EP - 11
AB - We describe the recent joint work of the author with David M. J. Calderbank and Paul Gauduchon on refined Kato inequalities for sections of vector bundles living in the kernel of natural first-order elliptic operators.
LA - eng
KW - first-order elliptic operator; Kato inequality
UR - http://eudml.org/doc/93403
ER -
References
top- [1] S. Bando, A. Kasue and H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989), 313-349. Zbl0682.53045MR90c:53098
- [2] P. Bérard, From vanishing theorems to estimating theorems : the Bochner technique revisited, Bull. Amer. Math. Soc. 19 (1988), 371-406. Zbl0662.53037MR89i:58152
- [3] J. P. Bourguignon, The magic of Weitzenböck formulas, in Variational methods (Paris, 1988), H. Brezis, J. M. Coron and I. Ekeland eds, PNLDE vol. 4, Birkhäuser, Zürich, 1990. Zbl0774.35003
- [4] T. Branson, Stein-Weiss operators and ellipticity, J. Funct. Anal. 151 (1997), 334-383. Zbl0904.58054MR99b:58219
- [5] T. Branson, Kato constants in Riemannian geometry, Preprint (1999), to appear in Math. Res. Lett. Zbl1039.53033
- [6] D. M. J. Calderbank, P. Gauduchon, and M. Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), 214-255. Zbl0960.58010MR2001f:58046
- [7] D. M. J. Calderbank, P. Gauduchon, and M. Herzlich, On the Kato inequality in Riemannian Geometry, to appear in Analyse harmonique et analyse sur les variétés, Proc. of the Luminy conf., 1-6 June 1999 (J. P. Bourguignon and O. Hijazi, eds.). Zbl1016.58007
- [8] W. Fulton and J. Harris, Representation Theory - A First Course, Grad. Text. Math. vol. 129, Springer, 1991. Zbl0744.22001MR93a:20069
- [9] P. Gauduchon, Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale, Ann. Sc. Norm. Sup. Pisa 18 (1991), 563-629. Zbl0763.53034MR93d:32046
- [10] H. Hess, R. Schrader and D. Uhlenbrock, Kato's inequality and the spectral distribution of Laplacians on compact Riemannian manifolds, J. Diff. Geom. 15 (1980), 27-38. Zbl0442.58032MR82g:58090
- [11] J. Råde, Decay estimates for Yang-Mills fields : two new proofs, Global analysis in modern mathematics (Orono, 1991, Waltham, 1992), Publish or Perish, Houston, 1993, pp. 91-105. Zbl1049.53505MR95g:53030
- [12] R. Schoen, L. Simon and S. T. Yau, Curvature estimates for minimal hypersurfaces, Acta Math. 134 (1975), 275-288. Zbl0323.53039MR54 #11243
- [13] K. Uhlenbeck, Removable singularities for Yang-Mills fields, Commun. Math. Phys. 83 (1982), 11-30. Zbl0491.58032MR83e:53034
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.