Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations
Journées équations aux dérivées partielles (2000)
- page 1-14
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topKajitani, Kunihiko. "Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations." Journées équations aux dérivées partielles (2000): 1-14. <http://eudml.org/doc/93405>.
@article{Kajitani2000,
abstract = {We shall give the local in time existence of the solutions in Gevrey classes to the Cauchy problem for Kirhhoff equations of $p$-laplacian type and investigate the propagation of analyticity of solutions for real analytic deta. When $p=2$, his equation as the global real analytic solution for the real analytic initial data.},
author = {Kajitani, Kunihiko},
journal = {Journées équations aux dérivées partielles},
keywords = {Gevrey classes; Kirchhoff equations of -Laplacian type},
language = {eng},
pages = {1-14},
publisher = {Université de Nantes},
title = {Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations},
url = {http://eudml.org/doc/93405},
year = {2000},
}
TY - JOUR
AU - Kajitani, Kunihiko
TI - Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations
JO - Journées équations aux dérivées partielles
PY - 2000
PB - Université de Nantes
SP - 1
EP - 14
AB - We shall give the local in time existence of the solutions in Gevrey classes to the Cauchy problem for Kirhhoff equations of $p$-laplacian type and investigate the propagation of analyticity of solutions for real analytic deta. When $p=2$, his equation as the global real analytic solution for the real analytic initial data.
LA - eng
KW - Gevrey classes; Kirchhoff equations of -Laplacian type
UR - http://eudml.org/doc/93405
ER -
References
top- [1] Alinhac, S. & Métivier, G.Propagation de L'analyticité des solutions de systèmes hyperboliques non-linéaires. Inv. Math. vol.75 (1984), 189-203. Zbl0545.35063MR86f:35010
- [2] S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivèes partielles, Izv. Akad. Nauk SSSR, Ser. Mat. v.4, 1940, 17-26. Zbl0026.01901MR2,102aJFM66.0471.01
- [3] K. Kajitani, Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey class, Hokkaido Math. J. v.12, 1983, 434-460. MR86a:35096
- [4] Kajitani K.The Cauchy problem for nonlinear hyperbolic systems, Bull. Sci. Math. v.110, 1986, 3-48. Zbl0657.35082MR87k:35156
- [5] Kajitani K. & Yamaguti K.Propagation of analyticity of solutions to the Cauchy problem for nonlinear symmetrizable systems, Ann. Scuola Norm. Sup. Pisa vol. 28, 1999, 471-487. Zbl0940.35128MR2001c:35140
- [6] Kajitani K.On the Cauchy problem for Kirchhoff equations of p-Laplacian type, Proceeding of Colloque of P.D.E. in memory of Jean Leray, 1999, Sweden. Zbl1031.35090
- [7] Lax, P.D.Nonlinear hyperbilic equations, Comm. Pure Appl. Math. vol. 6 (1953), 231-258. Zbl0050.31705MR15,36a
- [8] Mizohata, S.Analyticity of solutions of hyperbolic systems with analytic coefficients, Comm. Pure Appl. Math. vol. 14 (1961), 547-559. Zbl0105.07203MR24 #A2755
- [9] S.I. Pohozaev, On a class of quasilinear hyperbolic equations, Math. USSR. Sb. v.96, 1975, 152-166. Zbl0328.35060MR51 #6167
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.