Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations

Kunihiko Kajitani

Journées équations aux dérivées partielles (2000)

  • page 1-14
  • ISSN: 0752-0360

Abstract

top
We shall give the local in time existence of the solutions in Gevrey classes to the Cauchy problem for Kirhhoff equations of p -laplacian type and investigate the propagation of analyticity of solutions for real analytic deta. When p = 2 , his equation as the global real analytic solution for the real analytic initial data.

How to cite

top

Kajitani, Kunihiko. "Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations." Journées équations aux dérivées partielles (2000): 1-14. <http://eudml.org/doc/93405>.

@article{Kajitani2000,
abstract = {We shall give the local in time existence of the solutions in Gevrey classes to the Cauchy problem for Kirhhoff equations of $p$-laplacian type and investigate the propagation of analyticity of solutions for real analytic deta. When $p=2$, his equation as the global real analytic solution for the real analytic initial data.},
author = {Kajitani, Kunihiko},
journal = {Journées équations aux dérivées partielles},
keywords = {Gevrey classes; Kirchhoff equations of -Laplacian type},
language = {eng},
pages = {1-14},
publisher = {Université de Nantes},
title = {Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations},
url = {http://eudml.org/doc/93405},
year = {2000},
}

TY - JOUR
AU - Kajitani, Kunihiko
TI - Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations
JO - Journées équations aux dérivées partielles
PY - 2000
PB - Université de Nantes
SP - 1
EP - 14
AB - We shall give the local in time existence of the solutions in Gevrey classes to the Cauchy problem for Kirhhoff equations of $p$-laplacian type and investigate the propagation of analyticity of solutions for real analytic deta. When $p=2$, his equation as the global real analytic solution for the real analytic initial data.
LA - eng
KW - Gevrey classes; Kirchhoff equations of -Laplacian type
UR - http://eudml.org/doc/93405
ER -

References

top
  1. [1] Alinhac, S. & Métivier, G.Propagation de L'analyticité des solutions de systèmes hyperboliques non-linéaires. Inv. Math. vol.75 (1984), 189-203. Zbl0545.35063MR86f:35010
  2. [2] S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivèes partielles, Izv. Akad. Nauk SSSR, Ser. Mat. v.4, 1940, 17-26. Zbl0026.01901MR2,102aJFM66.0471.01
  3. [3] K. Kajitani, Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey class, Hokkaido Math. J. v.12, 1983, 434-460. MR86a:35096
  4. [4] Kajitani K.The Cauchy problem for nonlinear hyperbolic systems, Bull. Sci. Math. v.110, 1986, 3-48. Zbl0657.35082MR87k:35156
  5. [5] Kajitani K. & Yamaguti K.Propagation of analyticity of solutions to the Cauchy problem for nonlinear symmetrizable systems, Ann. Scuola Norm. Sup. Pisa vol. 28, 1999, 471-487. Zbl0940.35128MR2001c:35140
  6. [6] Kajitani K.On the Cauchy problem for Kirchhoff equations of p-Laplacian type, Proceeding of Colloque of P.D.E. in memory of Jean Leray, 1999, Sweden. Zbl1031.35090
  7. [7] Lax, P.D.Nonlinear hyperbilic equations, Comm. Pure Appl. Math. vol. 6 (1953), 231-258. Zbl0050.31705MR15,36a
  8. [8] Mizohata, S.Analyticity of solutions of hyperbolic systems with analytic coefficients, Comm. Pure Appl. Math. vol. 14 (1961), 547-559. Zbl0105.07203MR24 #A2755
  9. [9] S.I. Pohozaev, On a class of quasilinear hyperbolic equations, Math. USSR. Sb. v.96, 1975, 152-166. Zbl0328.35060MR51 #6167

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.