Expansions and eigenfrequencies for damped wave equations
Journées équations aux dérivées partielles (2001)
- page 1-10
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topReferences
top- [AschLebeau]M. Asch and G. LebeauThe spectrum of the damped wave operator for a bounded domain in , preprint, 2000. MR2016708
- [BLR]C. Bardos, G. Lebeau, J. RauchSharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control and Optimization, 30, 1992, 1024-1065. Zbl0786.93009MR1178650
- [Burq2]N. BurqMesures semi-classiques et mesures de défaut, Sém. Bourbaki, Asterisque 245, 1997, 167-195. Zbl0954.35102MR1627111
- [Burq3]N. BurqSemi-classical estimates for the resolvent in non-trapping geometries, preprint, 2000. MR1876933
- [BurqZworski]N. Burq and M. ZworskiResonance expansions in semi-classical propagation, Comm. Math. Phys., to appear. Zbl1042.81582MR1860756
- [PopovCardoso]F. Cardoso and G. PopovQuasimodes with exponentially small errors associated with elliptic periodic rays, preprint, 2001. MR1932033
- [Hitrik1]M. HitrikEigenfrequencies for damped wave equations on Zoll manifolds, preprint, 2001. MR1937840
- [Hitrik2]M. HitrikPropagator expansions for damped wave equations, in preparation.
- [HormIV]L. HörmanderThe analysis of linear partial differential operators IV, Springer Verlag 1985. Zbl0612.35001MR781537
- [Lebeau]G. LebeauEquation des ondes amorties. Algebraic and geometric methods in mathematical physics (Kaciveli 1993), 73-109, Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996. Zbl0863.58068MR1385677
- [Markus] A. S. MarkusIntroduction to the spectral theory of polynomial operator pencils, Stiintsa, Kishinev 1986 (Russian). Engl. transl. in Transl. Math. Monographs 71, Amer. Math. Soc., Providence 1988. Zbl0678.47005MR971506
- [Ralston] J. RalstonOn the construction of quasimodes associated with stable periodic orbits, Comm. Math. Phys. 51 1976, 219-242. Zbl0333.35066MR426057
- [RT1]J. Rauch and M. TaylorExponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J. 24, 1974, 79-86. Zbl0281.35012MR361461
- [RT2] J. Rauch and M. TaylorDecay of solutions to nondissipative hyperbolic systems on compact manifolds, Comm. Pure Appl. Math. 28, 1975, 501-523. Zbl0295.35048MR397184
- [Sjostrand1] J. SjöstrandAsymptotic distribution of eigenfrequencies for damped wave equations, Publ. R.I.M.S., 36 ( 2000), 573-611. Zbl0984.35121MR1798488
- [Stefanov]P. StefanovQuasimodes and resonances : sharp lower bounds, Duke Math. J., 99, 1999, 75-92. Zbl0952.47013MR1700740
- [StefanovVodev] P. Stefanov and G. VodevNeumann resonances in linear elasticity for an arbitrary body, Comm. Math. Phys., 176 1996, 645-659. Zbl0851.35032MR1376435
- [TZ]S. H. Tang and M. ZworskiFrom quasimodes to resonances, Math. Res. Lett., 5, 1998, 261-272. Zbl0913.35101MR1637824
- [Weinstein] A. WeinsteinAsymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J. 44 1977, 883-892. Zbl0385.58013MR482878
- [Zworski]M. ZworskiResonance expansions in wave propagation, Séminaire E.D.P., 1999-2000, École Polytechnique, XXII-1-XXII-9. MR1813184