Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur en dessous l’espace d’énergie
J. Colliander; M. Keel; G. Staffilani; H. Takaoka; T. Tao
Journées équations aux dérivées partielles (2002)
- page 1-15
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topColliander, J., et al. "Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur $mathbb{R}^3$ en dessous l’espace d’énergie." Journées équations aux dérivées partielles (2002): 1-15. <http://eudml.org/doc/93421>.
@article{Colliander2002,
abstract = {We sketch a proof of global existence and scattering for the defocusing cubic nonlinear Schrödinger equation in $H^s(\mathbb \{R\}^3)$ for $s>\frac\{4\}\{5\}$. The proof uses a new estimate of Morawetz type.},
author = {Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-15},
publisher = {Université de Nantes},
title = {Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur $mathbb\{R\}^3$ en dessous l’espace d’énergie},
url = {http://eudml.org/doc/93421},
year = {2002},
}
TY - JOUR
AU - Colliander, J.
AU - Keel, M.
AU - Staffilani, G.
AU - Takaoka, H.
AU - Tao, T.
TI - Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur $mathbb{R}^3$ en dessous l’espace d’énergie
JO - Journées équations aux dérivées partielles
PY - 2002
PB - Université de Nantes
SP - 1
EP - 15
AB - We sketch a proof of global existence and scattering for the defocusing cubic nonlinear Schrödinger equation in $H^s(\mathbb {R}^3)$ for $s>\frac{4}{5}$. The proof uses a new estimate of Morawetz type.
LA - eng
UR - http://eudml.org/doc/93421
ER -
References
top- [1] M. Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations Ann. Math. 118, (1983), 187-214. Zbl0522.35064MR707166
- [2] J. Bourgain, Refinements of Strichartz's inequality and applications to 2D-NLS with critical nonlinearity Intern. Mat. Res. Notices, 5, (1998), 253-283. Zbl0917.35126MR1616917
- [3] J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc. 12, (1999), 145-171. Zbl0958.35126MR1626257
- [4] J. Bourgain. Scattering in the energy space and below for 3D NLS, Jour. D'Anal. Math., 75:267-297, 1998. Zbl0972.35141MR1655835
- [5] J. Bourgain, Global solutions of nonlinear Schrödinger equations American Math. Society, Providence, R.I., 1999. Zbl0933.35178MR1691575
- [6] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, GAFA, 3 (1993), 107-156. Zbl0787.35097MR1209299
- [7] T. Cazenave, F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in H 1. Manuscripta Math. 61 (1988), 477-494. Zbl0696.35153MR952091
- [8] J. Colliander, G. Staffilani, H. Takaoka, Global wellposedness for KdV below L 2, Math. Res. Lett. 6 (1999), no. 5-6, 755-778. Zbl0959.35144MR1739230
- [9] J. Colliander, J. Delort, C. Kenig, G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), no. 8, 3307-3325. Zbl0970.35142MR1828607
- [10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao Global well-posedness for KdV in Sobolev spaces of negative index, Electronic Jour. Diff. Eq. 2001 (2001), No 26, 1-7. Zbl0967.35119MR1824796
- [11] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. TaoSharp Global WellPosedness of KdV and Modified KdV on the R and T, submitted to Jour. Amer. Math. Soc. Zbl1025.35025MR1969209
- [12] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. TaoMultilinear estimates for periodic KdV equations, and applications, preprint. Zbl1062.35109MR2054622
- [13] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. TaoGlobal well-posedness for the Schrödinger equations with derivative, Siam Jour. Math. Anal., 33 (2001), 649-669. Zbl1002.35113MR1871414
- [14] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T.Tao, A refined global wellposedness result for Schrödinger equations with derivative, to appear in Siam Jour. of Math. Anal.. Zbl1034.35120MR1950826
- [15] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. TaoAlmost conservation laws and global rough solutions to a Nonlinear Schrödinger Equation, to appear in Math. Res. Letters. X-13 Zbl1152.35491MR1906069
- [16] G. Fonseca, F. Linares, and G. Ponce. Global well-posedness of the modified Korteweg-de Vries equation, Comm. Partial Differential Equations, 24 (1999), 683-705. Zbl0930.35154MR1683054
- [17] J. Ginibre and G. Velo. Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl., 9, (1985), 363-401. Zbl0535.35069MR839728
- [18] J. Ginibre, G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys. 123 (1989), 535-573. Zbl0698.35112MR1151250
- [19] M. Keel, and T. Tao, Global well-posedness for large data for the MaxwellKlein-Gordon equation below the energy norm, preprint.
- [20] M. Keel, T. Tao, Local and global well-posedness of wave maps on R 1+1 for rough data, Intl. Math. Res. Notices 21 (1998), 1117-1156. Zbl0999.58013MR1663216
- [21] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980. Zbl0922.35028MR1646048
- [22] C. Kenig, G. Ponce, L. Vega; Global well-posedness for semi-linear wave equations. Comm. Partial Diff. Eq. 25 (2000), 1741-1752. Zbl0961.35092MR1778778
- [23] J. Lin, W. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, Journ. Funct. Anal. 30, (1978), 245-263. Zbl0395.35070MR515228
- [24] C. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. A 306 (1968), 291-29 Zbl0157.41502MR234136
- [25] C. Morawetz, W. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math. 25 (1972), 1-31. Zbl0228.35055MR303097
- [26] I.E. Segal, Space-time decay for solutions of wave equations, Adv. Math. 22 (1976), 304-311. Zbl0344.35058MR492892
- [27] R.S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-774. Zbl0372.35001
- [28] H. Takaoka, Global well-posedness for the Schrödinger equations with derivative in a nonlinear term and data in low order Sobolev space, Electronic Jour. Diff. Eq., 42 (2001), 1-23. Zbl0972.35140MR1836810
- [29] H. Takaoka, N. Tzvetkov, Global low regularity solutions for KadomtsevPetviashvili equation, Internat. Math. Res. Notices, 2001, No. 2, 77-114. Zbl0977.35126
- [30] T. Tao, Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), 443-544. Zbl1020.35046MR1869874
- [31] K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987) Zbl0638.35036MR891945
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.