Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur m a t h b b R 3 en dessous l’espace d’énergie

J. Colliander; M. Keel; G. Staffilani; H. Takaoka; T. Tao

Journées équations aux dérivées partielles (2002)

  • page 1-15
  • ISSN: 0752-0360

Abstract

top
We sketch a proof of global existence and scattering for the defocusing cubic nonlinear Schrödinger equation in H s ( 3 ) for s > 4 5 . The proof uses a new estimate of Morawetz type.

How to cite

top

Colliander, J., et al. "Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur $mathbb{R}^3$ en dessous l’espace d’énergie." Journées équations aux dérivées partielles (2002): 1-15. <http://eudml.org/doc/93421>.

@article{Colliander2002,
abstract = {We sketch a proof of global existence and scattering for the defocusing cubic nonlinear Schrödinger equation in $H^s(\mathbb \{R\}^3)$ for $s&gt;\frac\{4\}\{5\}$. The proof uses a new estimate of Morawetz type.},
author = {Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-15},
publisher = {Université de Nantes},
title = {Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur $mathbb\{R\}^3$ en dessous l’espace d’énergie},
url = {http://eudml.org/doc/93421},
year = {2002},
}

TY - JOUR
AU - Colliander, J.
AU - Keel, M.
AU - Staffilani, G.
AU - Takaoka, H.
AU - Tao, T.
TI - Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur $mathbb{R}^3$ en dessous l’espace d’énergie
JO - Journées équations aux dérivées partielles
PY - 2002
PB - Université de Nantes
SP - 1
EP - 15
AB - We sketch a proof of global existence and scattering for the defocusing cubic nonlinear Schrödinger equation in $H^s(\mathbb {R}^3)$ for $s&gt;\frac{4}{5}$. The proof uses a new estimate of Morawetz type.
LA - eng
UR - http://eudml.org/doc/93421
ER -

References

top
  1. [1] M. Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations Ann. Math. 118, (1983), 187-214. Zbl0522.35064MR707166
  2. [2] J. Bourgain, Refinements of Strichartz's inequality and applications to 2D-NLS with critical nonlinearity Intern. Mat. Res. Notices, 5, (1998), 253-283. Zbl0917.35126MR1616917
  3. [3] J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc. 12, (1999), 145-171. Zbl0958.35126MR1626257
  4. [4] J. Bourgain. Scattering in the energy space and below for 3D NLS, Jour. D'Anal. Math., 75:267-297, 1998. Zbl0972.35141MR1655835
  5. [5] J. Bourgain, Global solutions of nonlinear Schrödinger equations American Math. Society, Providence, R.I., 1999. Zbl0933.35178MR1691575
  6. [6] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, GAFA, 3 (1993), 107-156. Zbl0787.35097MR1209299
  7. [7] T. Cazenave, F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in H 1. Manuscripta Math. 61 (1988), 477-494. Zbl0696.35153MR952091
  8. [8] J. Colliander, G. Staffilani, H. Takaoka, Global wellposedness for KdV below L 2, Math. Res. Lett. 6 (1999), no. 5-6, 755-778. Zbl0959.35144MR1739230
  9. [9] J. Colliander, J. Delort, C. Kenig, G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), no. 8, 3307-3325. Zbl0970.35142MR1828607
  10. [10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao Global well-posedness for KdV in Sobolev spaces of negative index, Electronic Jour. Diff. Eq. 2001 (2001), No 26, 1-7. Zbl0967.35119MR1824796
  11. [11] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. TaoSharp Global WellPosedness of KdV and Modified KdV on the R and T, submitted to Jour. Amer. Math. Soc. Zbl1025.35025MR1969209
  12. [12] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. TaoMultilinear estimates for periodic KdV equations, and applications, preprint. Zbl1062.35109MR2054622
  13. [13] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. TaoGlobal well-posedness for the Schrödinger equations with derivative, Siam Jour. Math. Anal., 33 (2001), 649-669. Zbl1002.35113MR1871414
  14. [14] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T.Tao, A refined global wellposedness result for Schrödinger equations with derivative, to appear in Siam Jour. of Math. Anal.. Zbl1034.35120MR1950826
  15. [15] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. TaoAlmost conservation laws and global rough solutions to a Nonlinear Schrödinger Equation, to appear in Math. Res. Letters. X-13 Zbl1152.35491MR1906069
  16. [16] G. Fonseca, F. Linares, and G. Ponce. Global well-posedness of the modified Korteweg-de Vries equation, Comm. Partial Differential Equations, 24 (1999), 683-705. Zbl0930.35154MR1683054
  17. [17] J. Ginibre and G. Velo. Scattering theory in the energy space for a class of nonlinear SchrŽödinger equations, J. Math. Pures Appl., 9, (1985), 363-401. Zbl0535.35069MR839728
  18. [18] J. Ginibre, G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys. 123 (1989), 535-573. Zbl0698.35112MR1151250
  19. [19] M. Keel, and T. Tao, Global well-posedness for large data for the MaxwellKlein-Gordon equation below the energy norm, preprint. 
  20. [20] M. Keel, T. Tao, Local and global well-posedness of wave maps on R 1+1 for rough data, Intl. Math. Res. Notices 21 (1998), 1117-1156. Zbl0999.58013MR1663216
  21. [21] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980. Zbl0922.35028MR1646048
  22. [22] C. Kenig, G. Ponce, L. Vega; Global well-posedness for semi-linear wave equations. Comm. Partial Diff. Eq. 25 (2000), 1741-1752. Zbl0961.35092MR1778778
  23. [23] J. Lin, W. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, Journ. Funct. Anal. 30, (1978), 245-263. Zbl0395.35070MR515228
  24. [24] C. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. A 306 (1968), 291-29 Zbl0157.41502MR234136
  25. [25] C. Morawetz, W. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math. 25 (1972), 1-31. Zbl0228.35055MR303097
  26. [26] I.E. Segal, Space-time decay for solutions of wave equations, Adv. Math. 22 (1976), 304-311. Zbl0344.35058MR492892
  27. [27] R.S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-774. Zbl0372.35001
  28. [28] H. Takaoka, Global well-posedness for the Schrödinger equations with derivative in a nonlinear term and data in low order Sobolev space, Electronic Jour. Diff. Eq., 42 (2001), 1-23. Zbl0972.35140MR1836810
  29. [29] H. Takaoka, N. Tzvetkov, Global low regularity solutions for KadomtsevPetviashvili equation, Internat. Math. Res. Notices, 2001, No. 2, 77-114. Zbl0977.35126
  30. [30] T. Tao, Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), 443-544. Zbl1020.35046MR1869874
  31. [31] K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987) Zbl0638.35036MR891945

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.