Semi-classical limits of Schrödinger-Poisson systems via Wigner transforms
Journées équations aux dérivées partielles (2002)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topMauser, Norbert J.. "Semi-classical limits of Schrödinger-Poisson systems via Wigner transforms." Journées équations aux dérivées partielles (2002): 1-12. <http://eudml.org/doc/93422>.
@article{Mauser2002,
abstract = {We deal with classical and “semiclassical limits” , i.e. vanishing Planck constant $\hbar \simeq \epsilon \rightarrow 0$, eventually combined with a homogenization limit of a crystal lattice, of a class of “weakly nonlinear” NLS. The Schrödinger-Poisson (S-P) system for the wave functions $\lbrace \psi ^\epsilon _j(t,x)\rbrace $ is transformed to the Wigner-Poisson (W-P) equation for a “phase space function” $f^\epsilon (t,x,\xi )$, the Wigner function. The weak limit of $f^\epsilon (t,x,\xi )$, as $\epsilon $ tends to $0$, is called the “Wigner measure” $f(t,x,\xi )$ (also called “semiclassical measure” by P. Gérard). The mathematically rigorous classical limit from S-P to the Vlasov-Poisson (V-P) system has been solved first by P.L. Lions and T. Paul (1993) and, independently, by P.A. Markowich and N.J. Mauser (1993). There the case of the so called “completely mixed state”, i.e. $j=1,2,\dots ,\infty $, was considered where strong additional assumptions can be posed on the initial data. For the so called “pure state” case where only one (or a finite number) of wave functions $\lbrace \psi ^\epsilon _j(t,x)\rbrace $ is considered, recently P. Zhang, Y. Zheng and N.J. Mauser (2002) have given the limit from S-P to V-P in one space dimension for a very weak class of measure valued solutions of V-P that are not unique. For the setting in a crystal, as it occurs in semiconductor modeling, we consider Schrödinger equations with an additional periodic potential. This allows for the use of the concept of “energy bands”, Bloch decomposition of $L^2$ etc. On the level of the Wigner transform the Wigner function $f^\epsilon (t,x,\xi )$ is replaced by the “Wigner series” $f^\epsilon (t,x,k)$, where the “kinetic variable” $k$ lives on the torus (“Brioullin zone”) instead of the whole space. Recently P. Bechouche, N.J. Mauser and F. Poupaud (2001) have given the rigorous “semiclassical” limit from S-P in a crystal to the “semiclassical equations”, i.e. the “semiconductor V-P system”, with the assumption of the initial data to be concentrated in isolated bands.},
author = {Mauser, Norbert J.},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-12},
publisher = {Université de Nantes},
title = {Semi-classical limits of Schrödinger-Poisson systems via Wigner transforms},
url = {http://eudml.org/doc/93422},
year = {2002},
}
TY - JOUR
AU - Mauser, Norbert J.
TI - Semi-classical limits of Schrödinger-Poisson systems via Wigner transforms
JO - Journées équations aux dérivées partielles
PY - 2002
PB - Université de Nantes
SP - 1
EP - 12
AB - We deal with classical and “semiclassical limits” , i.e. vanishing Planck constant $\hbar \simeq \epsilon \rightarrow 0$, eventually combined with a homogenization limit of a crystal lattice, of a class of “weakly nonlinear” NLS. The Schrödinger-Poisson (S-P) system for the wave functions $\lbrace \psi ^\epsilon _j(t,x)\rbrace $ is transformed to the Wigner-Poisson (W-P) equation for a “phase space function” $f^\epsilon (t,x,\xi )$, the Wigner function. The weak limit of $f^\epsilon (t,x,\xi )$, as $\epsilon $ tends to $0$, is called the “Wigner measure” $f(t,x,\xi )$ (also called “semiclassical measure” by P. Gérard). The mathematically rigorous classical limit from S-P to the Vlasov-Poisson (V-P) system has been solved first by P.L. Lions and T. Paul (1993) and, independently, by P.A. Markowich and N.J. Mauser (1993). There the case of the so called “completely mixed state”, i.e. $j=1,2,\dots ,\infty $, was considered where strong additional assumptions can be posed on the initial data. For the so called “pure state” case where only one (or a finite number) of wave functions $\lbrace \psi ^\epsilon _j(t,x)\rbrace $ is considered, recently P. Zhang, Y. Zheng and N.J. Mauser (2002) have given the limit from S-P to V-P in one space dimension for a very weak class of measure valued solutions of V-P that are not unique. For the setting in a crystal, as it occurs in semiconductor modeling, we consider Schrödinger equations with an additional periodic potential. This allows for the use of the concept of “energy bands”, Bloch decomposition of $L^2$ etc. On the level of the Wigner transform the Wigner function $f^\epsilon (t,x,\xi )$ is replaced by the “Wigner series” $f^\epsilon (t,x,k)$, where the “kinetic variable” $k$ lives on the torus (“Brioullin zone”) instead of the whole space. Recently P. Bechouche, N.J. Mauser and F. Poupaud (2001) have given the rigorous “semiclassical” limit from S-P in a crystal to the “semiclassical equations”, i.e. the “semiconductor V-P system”, with the assumption of the initial data to be concentrated in isolated bands.
LA - eng
UR - http://eudml.org/doc/93422
ER -
References
top- [1] N.W. Ashcroft and N.D. MerminSolid State Physics, Holt, Rinehart, 1976
- [2] C. Bardos, L. Erdös, F. Golse, N.J. Mauser and H.-T. Yau, "Derivation of the Schrödinger-Poisson equation from the quantum N-particle Coulomb problem", C. R. Acad. Sci., t 334 (6), Serie I Math. (2002) 515-520 Zbl1018.81009MR1890644
- [3] C. Bardos, F. Golse and N. J. Mauser "Weak coupling limit of the N -particle Schrödinger equation", Math. Analysis and Applications 7 (2) (2000) 275-293 Zbl1003.81027MR1869286
- [4] C. Bardos, A. Gottlieb and F. Golse and N. J. Mauser, "Mean field dynamics of fermions and the time-dependent Hartree-Fock equation", to appear in J.d.Mathematiques Pures et Appl. (2002) Zbl1029.82022MR1996777
- [5] C. Bardos, A. Gottlieb and F. Golse and N. J. Mauser, "Derivation of the timedependent Hartree-Fock equation : the Coulomb interaction case", manuscript Zbl1029.82022
- [6] P. Bechouche, N. J. Mauser and F. Poupaud, "(Semi)-nonrelativistic limits of the Dirac equation with external time-dependent electromagnetic field", Comm. Math. Phys. 197 (1998) 405-425 Zbl0926.35124MR1652738
- [7] P. Bechouche, N. J. Mauser and F. Poupaud, "Semiclassical Limit for the Schrödinger-Poisson Equation in a Crystal", Comm. Pure and Appl. Math. 54 (2001) 1-40 Zbl1031.81024MR1823422
- [8] P. Bechouche, N. J. Mauser and S. Selberg, "Nonrelativistic limit of KleinGordon Maxwell to Schrödinger-Poisson", submitted to American J. of Math. (2002) Zbl1050.35106MR2033563
- [9] P. Bechouche, N.J. Mauser, S. Selberg, "Nonrelativistic limit of Dirac Maxwell to Schrödinger-Poisson", manuscript (2002) Zbl1050.35106
- [10] O. Bokanowski and N.J. Mauser, "Local approximation for the Hartree-Fock exchange potential: a deformation approach", Math.Meth. and Mod.in the Appl.Sci. 9 (6) (1999) 941-961 XI-10 Zbl0956.81097MR1702877
- [11] O. Bokanowski, B. Grébert and N.J. Mauser, "Rigorous derivation of the "X- alpha" exchange potential: a deformation approach", in "Density Functional and Ab Initio Theories Applied to Atoms, Molecules and Solids" J. Mol. Struct. (Theochem), Vol. 501-502 (2000) 47-58
- [12] F. Brezzi and P.A. Markowich, "The three dimensional Wigner-Poisson problem: existence, uniqueness and approximation", Math. Meth. Appl. Sci., 14 (1991) 35-62. Zbl0739.35080MR1087449
- [13] F. Castella, " L 2 solutions to the Schrödinger-Poisson system: existence, uniqueness, time behavior and smoothing effects", Math. Meth. Mod. Appl. Sci., 7 (1997), 1051-1083. Zbl0892.35141MR1487521
- [14] T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semilinéaires, Mathématiques et Applications, Ellipses, 1990. Zbl0786.35070MR1299976
- [15] R. J. DiPerna and P. L. Lions, "Solution globales d'equations du type VlasovPoisson", C. R. Acad. Sci. Paris, 307 (1988), 655-658. Zbl0682.35022MR967806
- [16] L. Erdös and H.-T. Yau, " Derivation of the nonlinear Schrödinger equation with Coulomb potential" Preprint (2001) MR1926667
- [17] P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., 50 (1997) 323-379. Zbl0881.35099MR1438151
- [18] J. Ginibre and G. Velo, On the global Cauchy problem for some nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Analyse non linéaire, 1 (1984), 309-323. Zbl0569.35070MR778977
- [19] P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1, Incompressible Models, Oxford lecture series in Mathematics and its Applications, Oxford University Press, New York, 1996. Zbl0866.76002MR1422251
- [20] P. L. Lions and B. Perthame, Propagation of moments and regularity for 3- dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430 Zbl0741.35061MR1115549
- [21] P. L. Lions and T. Paul, Sur les measures de Wigner, Rev. Mat. Iberoamericana, 9 (1993), 553-618 Zbl0801.35117MR1251718
- [22] A. Majda, G. Majda and Y. Zheng, "Concentrations in the one-dimensional Vlasov-Poisson equations, I : Temporal development and non-unique weak solutions in the single component case", Physica D, 74 (1994) 268-300 Zbl0813.35091MR1286201
- [23] P. A. Markowich and N. J. Mauser, The classical limit of a self-consistent quantum-Vlasov equation in 3-D, Math. Meth. Mod. Appl. Sci., 3 (1993), 109- 124 Zbl0772.35061MR1203274
- [24] P.A. Markowich, N. J. Mauser and F. Poupaud, "A Wignerfunction Approach to (Semi)classical Limits : Electrons in a Periodic Potential", J. of Math. Phys. 35 (1994) 1066-1094 XI-11 Zbl0805.35106MR1262733
- [25] P.A. Markowich, C.A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer (1990) Zbl0765.35001MR1063852
- [26] N. Masmoudi and N.J. Mauser, "The selfconsistent Pauli equation", Math. Monatshefte 132 (2001) 19-24 Zbl0973.35160MR1825716
- [27] N. Masmoudi, K. Nakanishi, private communication (2001)
- [28] N.J. Mauser, "The Schrödinger-Poisson-X model", Appl. Math. Lett. 14 (2001) 759-763 Zbl0990.81024MR1836081
- [29] K. Pfaffelmoser, "Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data", J. Diff. Eq., 95 (1992) 281-303 Zbl0810.35089MR1165424
- [Ro] R. Robert, "Unicité de la solution faible à support compact de l'équation de Vlasov Poisson", C.R.A.S., Sér. I, 324 (8) (1997) 873-877 Zbl0886.35118MR1450441
- [30] J. Schaeffer, "Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions", Comm. Partial Differential Equations, 16 (1991), 1313- 1335 Zbl0746.35050MR1132787
- [31] E. Wigner, "On the quantum correction for thermodynamic equilibrium", Phys. Rev., 40 (1932) 742-759. Zbl0004.38201JFM58.0948.07
- [32] A. I. Vol'pert and S. I. Hudjaev, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics (1985) Zbl0564.46025MR785938
- [33] P. Zhang, Y. Zheng and N.J. Mauser, "The limit from the Schrödinger-Poisson to Vlasov-Poisson equation with general data in one dimension", Comm. Pure and Appl. Math. 55 (5) (2002) 582-632 Zbl1032.81011MR1880644
- [34] Y. Zheng and A. Majda, "Existence of global weak solutions to one-component Vlasov-Poisson and Fokker-Planck-Poisson systems in one space dimension with measures as initial data", Comm. Pure Appl. Math., 47 (1994), pp. 1365-1401 Zbl0809.35088MR1295933
- [35] Y. Zheng, "Vlasov-Poisson systems with measures as initial data", Proc of the ICIAM 95. (1995)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.