Stabilité et asymptotique en temps grand de solutions globales des équations de Navier-Stokes
Isabelle Gallagher; Dragoş Iftimie; Fabrice Planchon
Journées équations aux dérivées partielles (2002)
- Volume: 334, Issue: 4, page 1-9
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Auscher, S. Dubois and P. Tchamitchian. Work in progress.
- [2] C. Calder´on. Existence of weak solutions for the Navier-Stokes equations with initial data in L p. Trans. Amer. Math. Soc., 318 (1), 179-200, 1990. Zbl0707.35118MR968416
- [3] M. Cannone. Ondelettes, paraproduits et Navier-Stokes, Diderotéditeur, Arts et Sciences, 1995. Zbl1049.35517MR1688096
- [4] J.-Y. Chemin and N. Lerner. Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J. Differential Equations, 121 (2), 314-328, 1995. Zbl0878.35089MR1354312
- [5] G. Furioli, P. Lemarié-Rieusset, and E. Terraneo. Unicité dans L 3 (R 3) et d'autres espaces fonctionnels limites pour Navier-Stokes. Rev. Mat. Iberoamericana, 16 (3), 605-667, 2000. Zbl0970.35101MR1813331
- [6] H. Fujita and T. Kato. On the Navier-Stokes initial value problem I, Archive for Rational Mechanics and Analysis, 16, 269-315, 1964. Zbl0126.42301MR166499
- [7] I. Gallagher, D. Iftimie and F. Planchon. Asymptotics and stability for global solutions to the Navier-Stokes equations. Preprint. Zbl1038.35054
- [8] I. Gallagher and F. Planchon. On global infinite energy solutions to the NavierStokes equations in two dimensions. Archive for Rational Mechanics and Analysis, 161, 307-337, 2002. Zbl1027.35090MR1891170
- [9] T. Kato. Strong L p solutions of the Navier-Stokes equations in R m with applications to weak solutions. Math. Zeit. 187, 471-480, 1984. Zbl0545.35073MR760047
- [10] H. Koch and D. Tataru. Well-posedness for the Navier-Stokes equations. Adv. Math., 157 (1), 22-35, 2001. Zbl0972.35084MR1808843
- [11] J. Leray. Sur le mouvement d'un liquide visqueux remplissant l'espace. Acta Mathematica, 63, 193-248, 1934. JFM60.0726.05
- [12] F. Planchon. Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in R 3. Annales de l'Institut Henri Poincaré, 12, 319-336, 1996 Zbl0865.35101MR1395675