Uniqueness results for some PDEs

Nader Masmoudi

Journées équations aux dérivées partielles (2003)

  • page 1-13
  • ISSN: 0752-0360

Abstract

top
Existence of solutions to many kinds of PDEs can be proved by using a fixed point argument or an iterative argument in some Banach space. This usually yields uniqueness in the same Banach space where the fixed point is performed. We give here two methods to prove uniqueness in a more natural class. The first one is based on proving some estimates in a less regular space. The second one is based on a duality argument. In this paper, we present some results obtained in collaboration with Pierre-Louis Lions, with Kenji Nakanishi and with Fabrice Planchon.

How to cite

top

Masmoudi, Nader. "Uniqueness results for some PDEs." Journées équations aux dérivées partielles (2003): 1-13. <http://eudml.org/doc/93437>.

@article{Masmoudi2003,
abstract = {Existence of solutions to many kinds of PDEs can be proved by using a fixed point argument or an iterative argument in some Banach space. This usually yields uniqueness in the same Banach space where the fixed point is performed. We give here two methods to prove uniqueness in a more natural class. The first one is based on proving some estimates in a less regular space. The second one is based on a duality argument. In this paper, we present some results obtained in collaboration with Pierre-Louis Lions, with Kenji Nakanishi and with Fabrice Planchon.},
author = {Masmoudi, Nader},
journal = {Journées équations aux dérivées partielles},
keywords = {duality argument},
language = {eng},
pages = {1-13},
publisher = {Université de Nantes},
title = {Uniqueness results for some PDEs},
url = {http://eudml.org/doc/93437},
year = {2003},
}

TY - JOUR
AU - Masmoudi, Nader
TI - Uniqueness results for some PDEs
JO - Journées équations aux dérivées partielles
PY - 2003
PB - Université de Nantes
SP - 1
EP - 13
AB - Existence of solutions to many kinds of PDEs can be proved by using a fixed point argument or an iterative argument in some Banach space. This usually yields uniqueness in the same Banach space where the fixed point is performed. We give here two methods to prove uniqueness in a more natural class. The first one is based on proving some estimates in a less regular space. The second one is based on a duality argument. In this paper, we present some results obtained in collaboration with Pierre-Louis Lions, with Kenji Nakanishi and with Fabrice Planchon.
LA - eng
KW - duality argument
UR - http://eudml.org/doc/93437
ER -

References

top
  1. [1] N. Bournaveas, Local existence for the Maxwell-Dirac equations in three space dimensions. Comm. Partial Differential Equations 21 (1996), no. 5-6, 693-720. Zbl0880.35116MR1391520
  2. [2] N. BournaveasLocal existence of energy class solutions for the Dirac-Klein-Gordon equations. Comm. Partial Differential Equations 24 (1999), no. 7-8, 1167-1193. Zbl0931.35134MR1697486
  3. [3] T. Cazenave and F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in H s . Nonlinear Anal. 14 (1990), no. 10, 807-836. Zbl0706.35127MR1055532
  4. [4] J.-Y. Chemin. Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel. Journal d'Analyse Mathématique, 77(?):27-50, 1999. Zbl0938.35125MR1753481
  5. [5] P.A.M. Dirac, Principles of Quantum Mechanics, Oxford University Press, 4th ed., London (1958) Zbl0080.22005
  6. [6] G. Furioli, and E. Terraneo. Besov spaces and unconditional well-posedness for the nonlinear Schrödinger equations in H ˙ s ( R n ) , to appear in Commun. Contemp. Math., 2001 Zbl1050.35102MR1992354
  7. [7] G. Furioli, P.-G. Lemarié-Rieusset, and E. Terraneo. Sur l’unicité dans L 3 ( R 3 ) des solutions ”mild” des équations de Navier-Stokes. C. R. Acad. Sci. Paris Sér. I Math., 325(12):1253-1256, 1997. Zbl0894.35083MR1490408
  8. [8] G. Furioli, P.-G. Lemarié-Rieusset, and E. Terraneo. Unicité dans L 3 ( R 3 ) et d’autres espaces fonctionnels limites pour Navier-Stokes. Rev. Mat. Iberoamericana, 3 (2000) 605-667. Zbl0970.35101MR1813331
  9. [9] M. G. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2), 132, 1990, 3, 485-509. Zbl0736.35067MR1078267
  10. [10] K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen. (German) Math. Z. 77 1961 295-308. Zbl0111.09105MR130462
  11. [11] T. Kato, Strong L p -solutions of the Navier-Stokes equation in R m , with applications to weak solutions., Math. Z. 187 (1984), no. 4, 471-480. Zbl0545.35073MR760047
  12. [12] T. Kato. On nonlinear Schrödinger equations. II. H s -solutions and unconditional well-posedness, J. Anal. Math., 67, 1995, 281-306, Zbl0848.35124MR1383498
  13. [13] S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J. 74 (1994), no. 1, 19-44. Zbl0818.35123MR1271462
  14. [14] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221-1268. Zbl0803.35095MR1231427
  15. [15] J. Leray. Etude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. Pures Appl., 12:1-82, 1933. Zbl0006.16702JFM59.0402.01
  16. [16] P.-L. Lions and N. Masmoudi. Unicité des solutions faibles de Navier-Stokes dans L N ( Ω ) . C. R. Acad. Sci. Paris Sér. I Math., 327(5):491-496, 1998. Zbl0990.35114MR1652574
  17. [17] P.-L. Lions and N. Masmoudi. Uniqueness of mild solutions of the Navier-Stokes system in L N ( Ω ) . Comm. Partial Differential Equations. 26 (2001), no. 11-12, 2211-2226. Zbl1086.35077MR1876415
  18. [18] N. Masmoudi and K. Nakanishi, Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations, to appear in Comm. Math. Physics, 2003. Zbl1029.35199MR2020223
  19. [19] N. Masmoudi and F. Planchon, On Uniqueness for the critical wave equation, preprint, 2003. Zbl1106.35035
  20. [20] N. Masmoudi and F. Planchon, On Uniqueness for wave maps, preprint, 2003. MR1992026
  21. [21] S. Monniaux. Uniqueness of mild solutions of the Navier-Stokes equation and maximal L p -regularity. C. R. Acad. Sci. Paris Sér. I Math., 328(8):663-668, 1999. Zbl0931.35127MR1680809
  22. [22] Andrea Nahmod, Atanas Stefanov, and Karen Uhlenbeck. On the well-posedness of the Wave Map problem in high dimensions. preprint, 2001. Zbl1085.58022MR2016196
  23. [23] B. Najman, The nonrelativistic limit of the nonlinear Dirac equation, Ann. Inst. Henri Poincaré, Anal. Non Lineaire 9 (1992) 3-12 Zbl0746.35036MR1151464
  24. [24] F. Planchon, On uniqueness for semilinear wave equations, to appear in Math. Zeit.. 2001 Zbl1023.35079MR1992026
  25. [25] J. Rauch, The u 5 Klein-Gordon equation. II. Anomalous singularities for semilinear wave equations. Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. I (Paris, 1978/1979), pp. 335-364, Res. Notes in Math., 53, Pitman, Boston, Mass.-London, 1981. Zbl0473.35055MR631403
  26. [26] Jalal Shatah and Michael Struwe. Regularity results for nonlinear wave equations. Ann. of Math. (2), 138(3):503-518, 1993. Zbl0836.35096MR1247991
  27. [27] Jalal Shatah and Michael Struwe. Well-posedness in the energy space for semilinear wave equations with critical growth. Internat. Math. Res. Notices, (7):303ff., approx. 7 pp. (electronic), 1994. Zbl0830.35086MR1283026
  28. [28] Jalal Shatah and Michael Struwe. The Cauchy problem for wave maps. Int. Math. Res. Not., (11):555-571, 2002. Zbl1024.58014MR1890048
  29. [20] M. Struwe. Uniqueness for critical nonlinear wave equations and wave maps via the energy inequality, Comm. Pure Appl. Math., 52 n 9, 1999, 1179-1188 Zbl0933.35141MR1692140
  30. [21] Y. ZhouUniqueness of generalized solutions to nonlinear wave equations. Amer. J. Math. 122 (2000), no. 5, 939-965. Zbl0961.35084MR1781926

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.