State-space models for maxima precipitation
Journal de la société française de statistique (2007)
- Volume: 148, Issue: 1, page 107-120
- ISSN: 1962-5197
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Buishand T.A. (1991) Extreme rainfall estimation by combining data from several sites. Hydrolog. Sci. J. 36(4):345-365.
- [2] Chevallier F., Lopez P., Tompkins A.M., Janiskov M., and Moreau E. (2004) The capability of 4D-Var systems to assimilate cloud-affected satellite infrared radiances. Quart. J. Roy. Meteor. Soc. 130:917-932.
- [3] Coles S.G. (2001) An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer-Verlag London Ltd., London. Zbl0980.62043MR1932132
- [4] Cooley D., Naveau P., Jomelli V., Rabatel A., and Grancher D. (2005) A bayesian hierarchical extreme value model for lichenometry. Environmetrics 16:1-20.
- [5] Davis R.A. and Resnick S.I. (1989) Basic Properties and Prediction of Max-Arma Processes. Adv. Appl. Probab. 21:781-803. Zbl0716.62098MR1039628
- [6] Dharssi I., Lorenc A.C., and Ingleby N.B. (1992) Treatment of gross errors using maximum probability theory. Quart. J. Roy. Meteor. Soc. 118(507), Part B:1017-1036(20).
- [7] Embrechts P., Klüppelberg C., and Mikosch T. (1997) Modelling Extremal Events for Insurance and Finance, Volume 33 of Applications of Mathematics. Springer-Verlag, Berlin. Zbl0873.62116MR1458613
- [8] Evensen G. (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 5:10143-10162.
- [9] Fisher R.A. and Tippett L.H.C. (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Cambridge. Philos. Soc. 24:180-190. Zbl54.0560.05JFM54.0560.05
- [10] Fougères A.L., Nolan J.P., and Rootzén H. (2006) Mixture Models for Extremes. Submitted..
- [11] Guo W., Wang Y., and Brown M. (1999) A signal extraction approach to modeling hormone time series with pulses and a changing baseline. J. Amer. Stat. Assoc. 94:746-756.
- [12] Helland I.S. and Nilsen T.S. (1976) On a General Random Exchange Model. J. Appl. Probab. 13(4):781-790. Zbl0349.60066MR431437
- [13] Hosking J.R.M., Wallis J.R., and Wood E.F. (1985) Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments. Technometrics, 27(3):251-261. MR797563
- [14] Katz R.W., Parlange M.B., and Naveau P. (2002) Statistics of extremes in hydrology. Adv. Water Resour. 25:1287-1304.
- [15] Kharin V. and Zwiers F. (2000) Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean gcm. J. Climate 13:3760-3788.
- [16] Koutsoyiannis D. and Baloutsos G. (2000) Analysis of a Long Record of Annual Maximum Rainfall in Athens, Greece, and Design Rainfall Inferences. Natural Hazards 22(1):31-51.
- [17] Naveau P., Genton M.G., and Shen X. (2005) A skewed Kalman filter. J. Multiv. Anal. 94(2):382-400. Zbl1066.62091MR2167921
- [18] Rodgers C.D. (2000) Inverse methods for atmospheric sounding. Theory and practice. Series on Atmospheric, Oceanic and Planetery Physics, Volume 2. World Scientific. Singapore-New Jersey-London-Hong-Kong. Zbl0962.86002MR1788828
- [19] Shephard N. (1994) Partially Non-Gaussian State-space Models. Biometrika 81:115-131. Zbl0796.62079MR1279661
- [20] Stuck B.W. (1977) Minimum Error Dispersion Linear Filtering of Scalar Symmetric Stable Processes. IEEE Trans. Automat. Contr. AC-23(3):507-509. Zbl0377.93051
- [21] Tawn J. (1990) Modelling multivariate extreme value distributions. Biometrika 77:245-253. Zbl0716.62051
- [22] West M. and Harrison J. (1997) Bayesian forecasting and dynamic models. Springer, New York. Zbl0871.62026MR1482232
- [23] Wilson P.S. and Toumi R. (2005) A fundamental probability distribution for heavy rainfall. Geophys. Res. Lett. 32(14).