Impact d’un aménagement de sécurité routière sur la gravité des accidents de la route
Assi N'Guessan; Marcel Truffier
Journal de la société française de statistique (2008)
- Volume: 149, Issue: 3, page 23-41
- ISSN: 1962-5197
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Aitchison J., Silvey S.D. (1958). Maximum Likelihood Estimation of parameters subject to restraints, Annals of mathematical statistics, 29, 813-829. Zbl0092.36704MR94873
- [2] Crowder M. (1984). On the constrained maximum likelihood estimation with non i.i.d. observations, Ann. Inst. Statist. Math. 36, A, 239-249. Zbl0553.62027MR758500
- [3] Efron B., Tibshirani R.J. (1993). An introduction to the bootstrap Chapman and Hall. Zbl0835.62038MR1270903
- [4] Haber M., Brown M.B. (1986). Maximum Likelihood methods for log-linear models when expected frequencies are subject to linear constraints, J.A.S.A. vol. 81, no 394, 477-482 Zbl0604.62058MR845886
- [5] Hauer E. (1997). Observational Before-After studies in road safety, Pergamon
- [6] Matthews G.B., Crowther N.A.S. (1995). A maximum likelihood estimation procedure when modelling in terms of constraints, South African Statist. J. no 29, 29-50 Zbl0833.62021MR1369086
- [7] N’Guessan A. (2003). Constrained covariance matrix estimation in road accident modelling with Schur complements, C.R. Acad. Sci. Paris, Ser. I 337, 219-222. Zbl1037.62052MR2001138
- [8] N’Guessan A., Essai A., Langrand C. (2001). Estimation multidimensionnelle des contrôles et de l’effet moyen d’une mesure de sécurité routière, Rev. Statistique Appliquée. XLIX(2), 83-100. Zbl0983.62093
- [9] N’Guessan A., Langrand C. (2005a). A covariance components estimation procedure when modelling a road safety measure in terms of linear constraints, Statistics, vol 39, n 4, 303-314. Zbl1084.62047MR2189182
- [10] N’Guessan A., Langrand C. (2005b). A Schur complement approach for computing subcovariance matrices arising in a road safety measure modelling, Journal of Computational and Applied Mathematics, 177, 331-345. Zbl1072.65009MR2125322
- [11] N’Guessan A., Bellavance F. (2005). A confidence interval estimation problem using the Schur complement approach, with application, C.R. Math. Rep. Acad. Sci. Canada Vol. 27, (3), pp. 84-91. MR2155661
- [12] N’Guessan A., Essai A., N’Zi M. (2006). An estimation method of the average effect and the different accident risks when modelling a road safety measure : A simulation study, Computational Statistics Data Analysis, 51, 1260-1277. MR2297521
- [13] Nicholson A.J. (1986). The randomness of accident count, Accid. Anal. and Prev. vol n18, pp. 193-198.
- [14] Nicholson A.J., Wong Y. D. (1993). Are accidents Poisson distributed? A statistical test, Accid. Anal. and Prev. , vol n26, pp. 609-622.
- [15] Oppe S. (1979). The randomness of accident count, Accid. Anal. and Prev. vol n11, pp. 101-115.
- [16] Ouellette D.V., (1981). Schur complements and statistics, Linear Algebra an its applications, 36, 187-295. Zbl0455.15012MR604341
- [17] Tanner J.C, (1958). A problem in the combination of accident frequencies, Biometrika, 45, 331-342. Zbl0088.12301
- [18] Zhang F. ed, (2005). Schur complement and Its applications, (Springer Verlag). Zbl1075.15002MR2160825