New bounds on the length of finite pierce and Engel series

P. Erdös; J. O. Shallit

Journal de théorie des nombres de Bordeaux (1991)

  • Volume: 3, Issue: 1, page 43-53
  • ISSN: 1246-7405

Abstract

top
Every real number x , 0 < x 1 , has an essentially unique expansion as a Pierce series : x = 1 x 1 - 1 x 1 x 2 + 1 x 1 x 2 x 3 - where the x i form a strictly increasing sequence of positive integers. The expansion terminates if and only if x is rational. Similarly, every positive real number y has a unique expansion as an Engel series : y = 1 y 1 - 1 y 1 y 2 + 1 y 1 y 2 y 3 + where the y i form a (not necessarily strictly) increasing sequence of positive integers. If the expansion is infinite, we require that the sequence yi be not eventually constant. Again, such an expansion terminates if and only if y is rational. In this paper we obtain some new upper and lower bounds on the lengths of these series on rational inputs a / b . In the case of the Engel series, this answers an open question of Erdös, Rényi, and Szüsz. However, our upper and lower bounds are widely separated.

How to cite

top

Erdös, P., and Shallit, J. O.. "New bounds on the length of finite pierce and Engel series." Journal de théorie des nombres de Bordeaux 3.1 (1991): 43-53. <http://eudml.org/doc/93535>.

@article{Erdös1991,
abstract = {Every real number $x, 0 &lt; x \le 1$, has an essentially unique expansion as a Pierce series :\begin\{equation*\} x = \frac\{1\}\{x^1\}- \frac\{1\}\{x^1 x^2\} + \frac\{1\}\{x^1 x^2 x^3\} - \cdots \end\{equation*\}where the $x_i$ form a strictly increasing sequence of positive integers. The expansion terminates if and only if $x$ is rational. Similarly, every positive real number $y$ has a unique expansion as an Engel series :\begin\{equation*\} y = \frac\{1\}\{y^1\}- \frac\{1\}\{y^1 y^2\} + \frac\{1\}\{y^1 y^2 y^3\} + \cdots \end\{equation*\}where the $y_i$ form a (not necessarily strictly) increasing sequence of positive integers. If the expansion is infinite, we require that the sequence yi be not eventually constant. Again, such an expansion terminates if and only if $y$ is rational. In this paper we obtain some new upper and lower bounds on the lengths of these series on rational inputs $a/b$. In the case of the Engel series, this answers an open question of Erdös, Rényi, and Szüsz. However, our upper and lower bounds are widely separated.},
author = {Erdös, P., Shallit, J. O.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Pierce series; Engel series; rational numbers; length of Engel series expansions; alternating Engel series; Pierce expansions},
language = {eng},
number = {1},
pages = {43-53},
publisher = {Université Bordeaux I},
title = {New bounds on the length of finite pierce and Engel series},
url = {http://eudml.org/doc/93535},
volume = {3},
year = {1991},
}

TY - JOUR
AU - Erdös, P.
AU - Shallit, J. O.
TI - New bounds on the length of finite pierce and Engel series
JO - Journal de théorie des nombres de Bordeaux
PY - 1991
PB - Université Bordeaux I
VL - 3
IS - 1
SP - 43
EP - 53
AB - Every real number $x, 0 &lt; x \le 1$, has an essentially unique expansion as a Pierce series :\begin{equation*} x = \frac{1}{x^1}- \frac{1}{x^1 x^2} + \frac{1}{x^1 x^2 x^3} - \cdots \end{equation*}where the $x_i$ form a strictly increasing sequence of positive integers. The expansion terminates if and only if $x$ is rational. Similarly, every positive real number $y$ has a unique expansion as an Engel series :\begin{equation*} y = \frac{1}{y^1}- \frac{1}{y^1 y^2} + \frac{1}{y^1 y^2 y^3} + \cdots \end{equation*}where the $y_i$ form a (not necessarily strictly) increasing sequence of positive integers. If the expansion is infinite, we require that the sequence yi be not eventually constant. Again, such an expansion terminates if and only if $y$ is rational. In this paper we obtain some new upper and lower bounds on the lengths of these series on rational inputs $a/b$. In the case of the Engel series, this answers an open question of Erdös, Rényi, and Szüsz. However, our upper and lower bounds are widely separated.
LA - eng
KW - Pierce series; Engel series; rational numbers; length of Engel series expansions; alternating Engel series; Pierce expansions
UR - http://eudml.org/doc/93535
ER -

References

top
  1. 1 A. Békéssy, Bemerkungen zur Engleschen Darstellung reeler Zahlen, Ann. Univ. Sci. Budapest.Eötvös Sect. Math.1 (1958), 143-151. Zbl0108.26804MR102497
  2. 2 P. Deheuvels, L'encadrement asymptotique des elements de la série d'Engel d'un nombre réel, C. R. Acad. Sci. Paris295 (1982), 21-24. Zbl0488.10050MR669252
  3. 3 F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191. 
  4. 4 P. Erdös, A. Rényi, and P. Szüsz, On Engel's and Sylvester's series, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.1 (1958), 7-32. Zbl0107.27002MR102496
  5. 5 G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 1985. Zbl0020.29201MR568909
  6. 6 M.E. Mays, Iterating the division algorithm, Fibonacci Quart.25 (1987), 204-213. Zbl0621.10008MR901856
  7. 7 T.A. Pierce, On an algorithm and its use in approximating roots of algebraic equations, Amer. Math. Monthly36 (1929), 523-525. Zbl55.0305.06MR1521866JFM55.0305.06
  8. 8 E. Ya. Remez, On series with alternating signs which may be connected with two algorithms of M. V. Ostrogradskii for the approximation of irrational numbers, Uspekhi Mat. Nauk6 (5) (1951), 33-42, (MR #13,444d). Zbl0045.02102MR44585
  9. 9 A. Rényi, A new approach to the theory of Engel's series, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.5 (1962), 25-32. Zbl0232.10028MR150123
  10. 10 J.B. Rosser and L. Schoenfeld, Approxamate formulas for some functions of prime numbers, Illinois J. Math.6 (1962), 64-94. Zbl0122.05001MR137689
  11. 11 J.O. Shallit, Metric theory of Pierce expansions, Fibonacci Quart.24 (1986), 22-40. Zbl0598.10057MR825872
  12. 12 J.O. Shallit, Letter to the editor, Fibonacci Quart.27 (1989), 186. 
  13. 13 W. Sierpinski, O kilku algorytmach dla rozwijania liczb rzeczywistych na szeregi, C. R. Soc. Sci. Varsovie4 (1911), 56-77, (In Polish; reprinted in French translation as Sur quelques algorithmes pour développer les nombres reéls en séries, in W. Sierpinski, Oeuvres Choisies, Vol. I, PWN, Warsaw, 1974, pp. 236-254.). 
  14. 14 K.G. Valeyev and E.D. Zlebov, The metric theory of an algorithm of M. V. Ostrogradskij, Ukrain. Mat. Z.27 (1975), 64-69. Zbl0309.10020MR366855

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.