Polynomial mappings defined by forms with a common factor
F. Halter-Koch; Władysław Narkiewicz
Journal de théorie des nombres de Bordeaux (1992)
- Volume: 4, Issue: 2, page 187-198
- ISSN: 1246-7405
Access Full Article
topHow to cite
topHalter-Koch, F., and Narkiewicz, Władysław. "Polynomial mappings defined by forms with a common factor." Journal de théorie des nombres de Bordeaux 4.2 (1992): 187-198. <http://eudml.org/doc/93560>.
@article{Halter1992,
author = {Halter-Koch, F., Narkiewicz, Władysław},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {height function; polynomial mappings; homogeneous polynomials; global fields; finitely generated extension field},
language = {eng},
number = {2},
pages = {187-198},
publisher = {Université Bordeaux I},
title = {Polynomial mappings defined by forms with a common factor},
url = {http://eudml.org/doc/93560},
volume = {4},
year = {1992},
}
TY - JOUR
AU - Halter-Koch, F.
AU - Narkiewicz, Władysław
TI - Polynomial mappings defined by forms with a common factor
JO - Journal de théorie des nombres de Bordeaux
PY - 1992
PB - Université Bordeaux I
VL - 4
IS - 2
SP - 187
EP - 198
LA - eng
KW - height function; polynomial mappings; homogeneous polynomials; global fields; finitely generated extension field
UR - http://eudml.org/doc/93560
ER -
References
top- [1] F. Halter-Koch, W. Narkiewicz, Finiteness properties of polynomial mappings, to appear. Zbl0779.12002MR1237098
- [2] S. Lang, Fundamentals of Diophantine Geometry, Springer1983. Zbl0528.14013MR715605
- [3] S. Lang, Introduction to algebraic geometry, Interscience Publ.1958. Zbl0095.15301MR100591
- [4] D.J. Lewis, Invariant sets of morphisms in projective and affine number spaces, J. Algebra20 (1972), 419-434. Zbl0245.12003MR302602
- [5] P. Liardet, Sur les transformations polynomiales et rationnelles, Sém. Th. Nomb. Bordeaux exp. n° 29, 1971-1972. Zbl0273.12101MR392947
- [6] P. Liardet, Sur une conjecture de W. Narkiewicz, C. R. Acad. Sc. Paris274 (1972), 1836-1838. Zbl0249.12103MR314841
- [7] W. Narkiewicz, On transformations by polynomials in two variables, II, Coll. Math.13 (1964), 101-106. Zbl0132.00803MR173672
- [8] J.-P. Serre, Lectures on the Mordell-Weil-Theorem, Aspects of Mathematics, Braun schweig1989. Zbl0676.14005
- [9] B. L. van der Waerden, Algebra, 2. Teil, Springer1967. Zbl0137.25403
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.