Polynomial mappings defined by forms with a common factor

F. Halter-Koch; Władysław Narkiewicz

Journal de théorie des nombres de Bordeaux (1992)

  • Volume: 4, Issue: 2, page 187-198
  • ISSN: 1246-7405

How to cite

top

Halter-Koch, F., and Narkiewicz, Władysław. "Polynomial mappings defined by forms with a common factor." Journal de théorie des nombres de Bordeaux 4.2 (1992): 187-198. <http://eudml.org/doc/93560>.

@article{Halter1992,
author = {Halter-Koch, F., Narkiewicz, Władysław},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {height function; polynomial mappings; homogeneous polynomials; global fields; finitely generated extension field},
language = {eng},
number = {2},
pages = {187-198},
publisher = {Université Bordeaux I},
title = {Polynomial mappings defined by forms with a common factor},
url = {http://eudml.org/doc/93560},
volume = {4},
year = {1992},
}

TY - JOUR
AU - Halter-Koch, F.
AU - Narkiewicz, Władysław
TI - Polynomial mappings defined by forms with a common factor
JO - Journal de théorie des nombres de Bordeaux
PY - 1992
PB - Université Bordeaux I
VL - 4
IS - 2
SP - 187
EP - 198
LA - eng
KW - height function; polynomial mappings; homogeneous polynomials; global fields; finitely generated extension field
UR - http://eudml.org/doc/93560
ER -

References

top
  1. [1] F. Halter-Koch, W. Narkiewicz, Finiteness properties of polynomial mappings, to appear. Zbl0779.12002MR1237098
  2. [2] S. Lang, Fundamentals of Diophantine Geometry, Springer1983. Zbl0528.14013MR715605
  3. [3] S. Lang, Introduction to algebraic geometry, Interscience Publ.1958. Zbl0095.15301MR100591
  4. [4] D.J. Lewis, Invariant sets of morphisms in projective and affine number spaces, J. Algebra20 (1972), 419-434. Zbl0245.12003MR302602
  5. [5] P. Liardet, Sur les transformations polynomiales et rationnelles, Sém. Th. Nomb. Bordeaux exp. n° 29, 1971-1972. Zbl0273.12101MR392947
  6. [6] P. Liardet, Sur une conjecture de W. Narkiewicz, C. R. Acad. Sc. Paris274 (1972), 1836-1838. Zbl0249.12103MR314841
  7. [7] W. Narkiewicz, On transformations by polynomials in two variables, II, Coll. Math.13 (1964), 101-106. Zbl0132.00803MR173672
  8. [8] J.-P. Serre, Lectures on the Mordell-Weil-Theorem, Aspects of Mathematics, Braun schweig1989. Zbl0676.14005
  9. [9] B. L. van der Waerden, Algebra, 2. Teil, Springer1967. Zbl0137.25403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.