Automates et fractions continues
Journal de théorie des nombres de Bordeaux (1993)
- Volume: 5, Issue: 1, page 1-22
- ISSN: 1246-7405
Access Full Article
topHow to cite
topBarbolosi, Dominique. "Automates et fractions continues." Journal de théorie des nombres de Bordeaux 5.1 (1993): 1-22. <http://eudml.org/doc/93574>.
@article{Barbolosi1993,
author = {Barbolosi, Dominique},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {automaton; continued fraction expansions; real numbers},
language = {fre},
number = {1},
pages = {1-22},
publisher = {Université Bordeaux I},
title = {Automates et fractions continues},
url = {http://eudml.org/doc/93574},
volume = {5},
year = {1993},
}
TY - JOUR
AU - Barbolosi, Dominique
TI - Automates et fractions continues
JO - Journal de théorie des nombres de Bordeaux
PY - 1993
PB - Université Bordeaux I
VL - 5
IS - 1
SP - 1
EP - 22
LA - fre
KW - automaton; continued fraction expansions; real numbers
UR - http://eudml.org/doc/93574
ER -
References
top- [1] D. Barbolosi, Fractions continues à quotients partiels impairs, propriétés arithmétiques et ergodiques, Thèse, Université de Provence, (janvier 1988). Zbl0713.11052
- [2] A. Hurwitz, Über eine besondere Art der Kettenbruchentwicklung reeller Grössen, Acta Math.12 (1889), 367-405. JFM21.0188.01
- [3] C. Kraaikamp, Metric and Arithmetic Results for Continued Fraction Expansions, Thèse, Université d'Amsterdam, (avril 1990), (page 157).
- [4] J.-L. Lagrange, Addition au mémoire sur la résolution des équations numériques, Mem. Ber.(= Oeuvres, II) 24 (1970).
- [5] G.J. Rieger, Über die Länge von Kettenbrüche mit ungeraden Teilnennern, Abh. Braunschweig. Wiss. Ges.32 (1981), 61-69. Zbl0479.10007MR653194
- [6] G.J. Rieger, Ein Heilbronn-Satz für Kettenbrüchen mit ungeraden Teilnennern, Math. Nachr.101 (1981), 295-307. Zbl0481.10032MR638347
- [7] G.J. Rieger, On the metrical theory of continued fraction with odd partial quotients. Topics in classical number theory, I, II, (Budapest 1981), Colloq. Math. Soc. Janos Bolyai, (North Holland) 34 (1984), 1371-1418. Zbl0549.10039MR781189
- [8] F. Schweiger, Continued fractions with odd and even partial quotients, Arbeitsbericht Math. Instit. der Un. Salzburg4 (1982), 59-70.
- [9] F. Schweiger, A theorem of Kuzmin-Levy type for continued fractions with odd partial quotients, Arbeitsbericht Math. Instit. der Un. Salzburg4 (1982), 45-50. Zbl0506.10038
- [10] F. Schweiger, On the approximation by continued fractions with odd and even partial quotients, Mathematisches Institut Salzburg, Arbeitsbericht 1-2 (1984), 105-114.
- [11] O. Perron, Die Lehre von den Kettenbrüchen, Chelsea Publ. Comp., New-York, 1929. Zbl55.0262.09MR37384JFM55.0262.09
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.