Sur la mesure invariante de l'extension naturelle de la transformation des fractions continues

Christian Faivre

Journal de théorie des nombres de Bordeaux (1993)

  • Volume: 5, Issue: 2, page 323-332
  • ISSN: 1246-7405

How to cite

top

Faivre, Christian. "Sur la mesure invariante de l'extension naturelle de la transformation des fractions continues." Journal de théorie des nombres de Bordeaux 5.2 (1993): 323-332. <http://eudml.org/doc/93585>.

@article{Faivre1993,
author = {Faivre, Christian},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {continued fraction expansions; natural extension; invariant measure},
language = {fre},
number = {2},
pages = {323-332},
publisher = {Université Bordeaux I},
title = {Sur la mesure invariante de l'extension naturelle de la transformation des fractions continues},
url = {http://eudml.org/doc/93585},
volume = {5},
year = {1993},
}

TY - JOUR
AU - Faivre, Christian
TI - Sur la mesure invariante de l'extension naturelle de la transformation des fractions continues
JO - Journal de théorie des nombres de Bordeaux
PY - 1993
PB - Université Bordeaux I
VL - 5
IS - 2
SP - 323
EP - 332
LA - fre
KW - continued fraction expansions; natural extension; invariant measure
UR - http://eudml.org/doc/93585
ER -

References

top
  1. [1] R. Adler and L. Flatto, Cross section maps for the geodesic flows I (the modular surface), Ergodic Theory and Dynamical Systems, Proceedings Special Year Maryland Progress in Math., Birkhauser, Boston and Stuttgart, 2 (1979-1980), 103-161. Zbl0496.58009MR670077
  2. [2] W. Bosma, H. Jager and F. Wiedijk, Some metrical observations on the approximation by continued fractions, Indagationes Mathematicae, 45, 3 (1983), 281-299. Zbl0519.10043MR718069
  3. [3] M. Berger, P. Gauduchon, E. Mazet, Le Spectre d'une Variété Riemannienne, Lecture Notes in Mathematics194, Springer1971. Zbl0223.53034MR282313
  4. [4] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan 11, Iwanami Shoten and Princeton University Press, 1971. Zbl0221.10029MR314766
  5. [5] C. Series, The modular surface and continued fractions, J. London Math. Soc. (2), 31 (1985), 69-80. Zbl0545.30001MR810563
  6. [6] P. Arnoux, A. Nogueira, Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles, Preprint 1991. MR1251147

NotesEmbed ?

top

You must be logged in to post comments.