Sur les normes universelles dans les Z p -extensions

Cornelius Greither

Journal de théorie des nombres de Bordeaux (1994)

  • Volume: 6, Issue: 2, page 205-220
  • ISSN: 1246-7405

How to cite

top

Greither, Cornelius. "Sur les normes universelles dans les $Z_p$-extensions." Journal de théorie des nombres de Bordeaux 6.2 (1994): 205-220. <http://eudml.org/doc/93601>.

@article{Greither1994,
author = {Greither, Cornelius},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {group of -units; existence of a norm map; Galois descent; rank on -extensions; universal norms},
language = {fre},
number = {2},
pages = {205-220},
publisher = {Université Bordeaux I},
title = {Sur les normes universelles dans les $Z_p$-extensions},
url = {http://eudml.org/doc/93601},
volume = {6},
year = {1994},
}

TY - JOUR
AU - Greither, Cornelius
TI - Sur les normes universelles dans les $Z_p$-extensions
JO - Journal de théorie des nombres de Bordeaux
PY - 1994
PB - Université Bordeaux I
VL - 6
IS - 2
SP - 205
EP - 220
LA - fre
KW - group of -units; existence of a norm map; Galois descent; rank on -extensions; universal norms
UR - http://eudml.org/doc/93601
ER -

References

top
  1. [1] J. Coates, On K2 and some classical conjectures in algebraic number theory, Ann. Math.95 (1972), 99-116. Zbl0245.12005MR360523
  2. [2] K. Iwasawa, On Zl-extensions of algebraic number fields, Ann. Math.98 (1973), 246-326. Zbl0285.12008MR349627
  3. [3] J.-F. Jaulent, Noyau universel et valeurs absolues, Journées arithmétiques de Luminy, Astérisque198-200 (1990), 187-209. Zbl0756.11033MR1144323
  4. [4] B. Kahn, Descente galoisienne et K2 des corps de nombres, K-theory7 (1993), 55-100. Zbl0780.12007MR1220427
  5. [5] F. Keune, On the structure of the K2 of the rings of integers in a number field, K-theory2 (1989), 625-645. Zbl0705.19007MR999397
  6. [6] J.M. Kim, S. Bae et I. Lee, Cyclotomic units in Zp-extensions, Israel J. Math.75 (1991), 161-165. Zbl0765.11042MR1164588
  7. [7] M. Kolster, An idelic approach to the wild kernel, Invent. Math.103 (1991), 9-24. Zbl0724.11056MR1079838
  8. [8] L.V. Kuz'min, The Tate module for algebraic number fields, Math. USSR Izv.6(2) (1972), 263-321. Zbl0257.12003MR304353
  9. [9] M. Levine, The indecomposable K3 of a field, Ann. Sci. Ecole Norm. Sup22 (1989), 255-344. Zbl0705.19001MR1005161
  10. [10] A.S. Merkur'ev et A.A. Suslin, The group K3 of a field, Math. USSR Izv.36 (1990), 541-565. Zbl0725.19003MR1072694
  11. [11] E. de Shalit, A note on norm-coherent units in certain Zp-extensions, Algebraic number theory in honor of K. Iwasawa, Advanced Studies in Pure Math.17 (1989), 83-87. Zbl0731.11060
  12. [12] W. Sinnott, On the Stilckelberger ideal and the circular units of an abelian field, Invent. Math62 (1980), 181-234. Zbl0465.12001MR595586
  13. [13] W. Sinnott, Appendice à :Regulators and Iwasawa modules, par L. J. Federer et B. H. Gross, Invent. Math.62 (1981), 443-457. Zbl0468.12005MR604838
  14. [14] D. Solomon, On a construction of p-units in abelian fields, Invent. Math.109 (1992), 329-350. Zbl0772.11043MR1172694

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.