A geometric description of the class invariant homomorphism

A. Agboola

Journal de théorie des nombres de Bordeaux (1994)

  • Volume: 6, Issue: 2, page 273-280
  • ISSN: 1246-7405

How to cite

top

Agboola, A.. "A geometric description of the class invariant homomorphism." Journal de théorie des nombres de Bordeaux 6.2 (1994): 273-280. <http://eudml.org/doc/93604>.

@article{Agboola1994,
author = {Agboola, A.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {group scheme; Picard invariant homomorphism; Neron model; good reduction; Cartier dual; Kummer order; Kummer extension},
language = {eng},
number = {2},
pages = {273-280},
publisher = {Université Bordeaux I},
title = {A geometric description of the class invariant homomorphism},
url = {http://eudml.org/doc/93604},
volume = {6},
year = {1994},
}

TY - JOUR
AU - Agboola, A.
TI - A geometric description of the class invariant homomorphism
JO - Journal de théorie des nombres de Bordeaux
PY - 1994
PB - Université Bordeaux I
VL - 6
IS - 2
SP - 273
EP - 280
LA - eng
KW - group scheme; Picard invariant homomorphism; Neron model; good reduction; Cartier dual; Kummer order; Kummer extension
UR - http://eudml.org/doc/93604
ER -

References

top
  1. [A1] A. Agboola, Iwasawa theory of elliptic curves and Galois module structure, Duke Math. J.71 (1973), 441-462. Zbl0802.11051MR1233444
  2. [A2] A. Agboola, p-adic representations and Galois module structure, preprint. 
  3. [A3] A. Agboola, Abelian varieties and Galois module structure in global function fields, Math. Z. (to appear). Zbl0863.11078
  4. [A4] A. Agboola, On p-adic height pairings and locally free classgroups of Hopf orders, in preparation. Zbl0967.11046
  5. [AT] A. Agboola, M.J. Taylor, Class invariants of Mordell-Weil groups, J. reine angew. Math.447 (1994), 23-61. Zbl0799.11049MR1263168
  6. [BT] N.P. Byott, M.J. Taylor, Hopf orders and Galois module structure, in: Group rings and classgroups, K. W. Roggenkamp, M. J. Taylor (eds.), Birkhauser, 1992. Zbl0811.11068MR1167451
  7. [CM] L. Childs, A. Magid, The Picard invariant of a principal homogeneous space, J. Pure and Appl. Alg.4 (1974), 273-286. Zbl0282.14015MR340266
  8. [CS] G. Cornell, J. Silverman (eds.), Arithmetic Geometry, Springer, 1986. Zbl0596.00007MR861969
  9. [F] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpen, Invent. Math.73 (1983), 349-366. Zbl0588.14026MR718935
  10. [G] R. Greenberg, Iwasawa theory for p-adic representations, Advanced Studies in Pure Mathematics17 (1989), Academic Press, 97-137. Zbl0739.11045MR1097613
  11. [Mi] J. Milne, Abelian varieties, in: Arithmetic Geometry, G. Cornell, J. Silverman (eds.), Springer, 1986. Zbl0604.14028MR861974
  12. [Mu] D. Mumford, Abelian Varieties, OUP, 1970. MR282985
  13. [PR] B. Perrin-Riou, Théorie d'Iwasawa et hauteurs p-adique, Invent. Math.109 (1992), 137-185. Zbl0781.14013MR1168369
  14. [P] A. Plater, Height Pairings on Elliptic Curves, Ph.D. Thesis, Cambridge University, 1991. 
  15. [R] K. Ribet, Kummer theory on extensions of abelian varieties by tori, Duke Math. J.49 (1979), 745-761. Zbl0428.14018MR552524
  16. [Sc] P. Schneider, Iwasawa theory for abelian varieties—a first approach, Invent. Math.71 (1983), 251-293. Zbl0511.14010MR689645
  17. [Se] J.-P. Serre, Algebraic Groups and Class Fields, Springer, 1988. Zbl0703.14001MR918564
  18. [ST] A. Srivastav, M.J. Taylor, Elliptic curves with complex multiplication and Galois module structure, Invent. Math.99 (1990), 165-184. Zbl0705.14031MR1029394
  19. [T1] M.J. Taylor, Mordell-Weil groups and the Galois module structure of rings of integers, Ill. J. Math.32 (1988), 428-452. Zbl0631.14033MR947037
  20. [W] W. Waterhouse, Principal homogeneous spaces and group scheme extensions, AMS Transactions153 (1971), 181-189. Zbl0208.48401MR269659

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.