Halfway to a solution of
R. A. Mollin; A. J. Van der Poorten; H. C. Williams
Journal de théorie des nombres de Bordeaux (1994)
- Volume: 6, Issue: 2, page 421-457
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H.W. Lenstra Jr, On the calculation of regulators and class numbers of quadratic fields, J. V. ARMITAGE ed., Journées Arithmétiques 1980, LMS Lecture Notes56, Cambridge, 1982, pp. 123-151.. Zbl0487.12003MR697260
- [2] R.A. Mollin and A.J. Van Der Poorten, A note on symmetry and ambiguity, Bull. Austral. Math. Soc.51 (1995), 215-233. Zbl0824.11003MR1322789
- [3] Oskar Perron, Die Lehre von den Kettenbrüchen, (Chelsea reprint of 1929 edition). Zbl0056.05901
- [4] A.J. Van Der Poorten, An introduction to continued fractions, Diophantine Analysis, LMS Lecture Notes in Math.109, ed. J. H. LOXTON and A. J. VAN DER POORTEN, Cambridge University Press, 1986, pp. 99-138. Zbl0596.10008MR874123
- [5] A.J. Van Der Poorten, Fractions of the period of the continued fraction expansion of quadratic integers, Bull. Austral. Math. Soc44 (1991), 155-169. Zbl0733.11004MR1120403
- [6] D. Shanks, Class number, a theory of factorization, and genera, Proc. Symp. Pure Math., 20 (1969 Institute on Number Theory), Amer. Math. Soc., Providence1971, pp. 415-440, see also The infrastructure of a real quadratic field and its applications, Proc. Number Theory Conference, Boulder, 1972. Zbl0223.12006MR316385
- [7] D. Shanks, On Gauβ and composition, Number Theory and Applications, Richard A. MOLLIN ed. (NATO - Advanced Study Institute, Banff, 1988), Kluwer Academic Publishers, Dordrecht, 1989, pp. 163-204.