Les modèles stochastiques de l'apprentissage

H. Rouanet

Mathématiques et Sciences Humaines (1964)

  • Volume: 6, page 3-22
  • ISSN: 0987-6936

How to cite

top

Rouanet, H.. "Les modèles stochastiques de l'apprentissage." Mathématiques et Sciences Humaines 6 (1964): 3-22. <http://eudml.org/doc/93952>.

@article{Rouanet1964,
author = {Rouanet, H.},
journal = {Mathématiques et Sciences Humaines},
language = {fre},
pages = {3-22},
publisher = {Ecole Pratique des hautes études, Centre de mathématique sociale et de statistique},
title = {Les modèles stochastiques de l'apprentissage},
url = {http://eudml.org/doc/93952},
volume = {6},
year = {1964},
}

TY - JOUR
AU - Rouanet, H.
TI - Les modèles stochastiques de l'apprentissage
JO - Mathématiques et Sciences Humaines
PY - 1964
PB - Ecole Pratique des hautes études, Centre de mathématique sociale et de statistique
VL - 6
SP - 3
EP - 22
LA - fre
UR - http://eudml.org/doc/93952
ER -

References

top
  1. Blau, J.H.The combining of classes condition in learning theory, Technical Report, N° 32, August 23, 1960, Institute for Math. Studies in Soc. Sciences, Stanford, Calif. 
  2. Bush, R.R. et Mosteller, F.: A stochastic models in application to learning, Ann. Math. Stat.24, 1959, 559-585. Zbl0051.35604MR58909
  3. Bush, R.R. Mosteller, F., et Thompson, G.L.: A formal structure for multiple-choice situation, in R.M. Thrall, C.H. Coombs, et R.L. Davis et al: Decision processes (New-York, Wiley, 1954). Zbl0058.13707MR66616
  4. Estes, W.K., et Suppes, P. a) Foundations of linear models (chap. 8, in Bush, Estes et al). 
  5. b) Foundations of statistical learning theory: II. Stimulus sampling models for simple learning, Technical Report, N° 4, 1959, Institute for Math. Studies in Soc. Sciences, Stanford, Calif. 
  6. Harris, T.E., Bellman, R. et Shapiro, H.N. - Studies in functional equations occuring in decision processes (Research Memorandum RM-875, RAND/ Corporation, Santa Monica, Calif. July 1, 1952). 
  7. Kanal, L.A functional equation analysis of two learning models (Psychometrika, 27, 1962, 84-104.) Zbl0100.34703MR143662
  8. Karlin, S.Some random walks arising in learning models (Pacific J. of Math, 1953, 3, 725-756). Zbl0051.10603MR58910
  9. Kemeny, J.G., De Leeuw, K., Snell, J.L. et Thompson, G.L. (Progress Report Number 1, Darmouth Mathematics Project, Darmouth College, March, 1955). 
  10. Kemeny, J.G., et Snell, J.L.: Markov processes in learning theory (Psychometrika, 1957, 22, 221-230). Zbl0088.11105MR91234
  11. Lamperti, S. et Suppes, P.: Chains of infinite order and their applications to learning theory (Pacific J. of Math, 1959, 9, 739-754). Zbl0101.11401MR108855
  12. Atkinson, R.C. et Estes, W.K.: Stimulus Sampling theory (in Vol. 2 de BUSH et al.: Handbook). 
  13. Atkinson, R.C. et al.: Studies in mathematical psychology (Stanford, Calif.Stanford Univ. Press. 1963). Zbl0128.40001MR182463
  14. Bower, G.H.Application of a model to paired-associate learning (Psychometrika, 26, Sept. 1961). Zbl0121.37201
  15. Bush, R.R., Luce, R.D. et Galanter, E. et al.: Handbook of mathematical psychology (New-York, Wiley, 1963, 5 Volumes). Zbl0128.39901
  16. Bush, R.R., Estes, W.K. et al.: Studies in mathematical learning theory (Stanford, Calif.Stanford Univ. Press, 1959). Zbl0089.15701MR122605
  17. Bush, R.R. et Mosteller, F.: Stochastic models for learning (New-York, Wiley, 1955). Zbl0064.39002MR70143
  18. Bush, R.R. et Sternberg, S.: A single-operator model (chap. 10 in Bush, Estes et al.). 
  19. Estes, W.K.Toward a statistical theory of learning (Psych. Review vol. 57, 1950). 
  20. Estes, W.K.Component and pattern models with Markovian interpretations (chap. 1 in Bush, Estes et al.). 
  21. Falmagne, J.C. - Un modèle linéaire pour les temps de réaction de choix. Application à des résultats expérimentaux, Univ. Libre de Bruxelles, Lab. de Psychologie (polycopiée 1962). 
  22. Falmagne, J.C. - A linear model for choice reaction time with applications to experimental results (à paraître dans Journal of Mathematical Psychology, 1964). 
  23. Sternberg, S. - Stochastic learning theory (in Vol. 2 de BUSH et al.: in Handbook of Mathematical Psychology). 
  24. Suppes, P. - A linear model for a continuum of responses (chap. 19 in Bush, Estes et al.). 
  25. Suppes, P. et Atkinson, R.C.: Markov learning models for multiperson interactions (Stanford, Calif.Stanford Univ. Press, 1960). Zbl0091.16203MR130020
  26. Suppes, P. Rouanet, H., Levine, M. et Frankmann, A.: Empirical comparison of models for a continuum of responses with non-contingent bimodal renforcement (sous presse, à paraître dans Studies in Mathematical Psychology,/Stanford Univ. Press). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.