Axiomatiques et propriétés des quasi-ordres

B. Monjardet

Mathématiques et Sciences Humaines (1978)

  • Volume: 63, page 51-82
  • ISSN: 0987-6936

How to cite

top

Monjardet, B.. "Axiomatiques et propriétés des quasi-ordres." Mathématiques et Sciences Humaines 63 (1978): 51-82. <http://eudml.org/doc/94213>.

@article{Monjardet1978,
author = {Monjardet, B.},
journal = {Mathématiques et Sciences Humaines},
keywords = {semiorders; interval orders; semi-transitive orders; duality; complete preorders; semitransitive relations},
language = {fre},
pages = {51-82},
publisher = {Ecole Pratique des hautes études, Centre de mathématique sociale et de statistique},
title = {Axiomatiques et propriétés des quasi-ordres},
url = {http://eudml.org/doc/94213},
volume = {63},
year = {1978},
}

TY - JOUR
AU - Monjardet, B.
TI - Axiomatiques et propriétés des quasi-ordres
JO - Mathématiques et Sciences Humaines
PY - 1978
PB - Ecole Pratique des hautes études, Centre de mathématique sociale et de statistique
VL - 63
SP - 51
EP - 82
LA - fre
KW - semiorders; interval orders; semi-transitive orders; duality; complete preorders; semitransitive relations
UR - http://eudml.org/doc/94213
ER -

References

top
  1. [1] Aigner M., "Graphs and binary relations", in The many facets of graph theory, New York, Springer Verlag, 1969. Zbl0186.27504MR266783
  2. [2] Avery P., "Semiorders and representable graphs", in Proceedings of Fifth British Combinatorial Conference, 5-9, Winnipeg, Utilitas Mathematica, 1976. Zbl0327.05110MR396340
  3. [3] Barbut M., Monjardet B., Ordre et Classification, Algèbre et Combinatoire, Paris, Hachette, 1970. Zbl0267.06001
  4. [3a] Berge C., Graphes et Hypergpaphes, Paris, Dunod, 1970. Zbl0213.25702MR722294
  5. [4] Birkhoff G., Lattice Theory, New York, American Mathematical Society, 1940 (third édition, 1967). Zbl0063.00402MR227053JFM66.0100.04
  6. [5] Bogart K.P., Rabinovitvh I., Trotter, Jr, W.T., "A bound on the dimension of interval orders, J. Comb. Th., (A) , 21 (1976), 319-328. Zbl0351.06004MR416998
  7. [6] Bouchet A., Etude combinatoire des ordonnés finis, thèse d'état, Université Scientifique et médicale deGrenoble, 1971. 
  8. [7] Bourbaki N., Eléments de Mathématiques, livre I, chapitre 3, Paris, Hermann, 1956. 
  9. [8] Chandon J.L., Lemaire J., Pouget J., "Dénombrement des quasi-ordres sur un ensemble fini", Math. Sci. Hum., 62, (1978), 61-80. Zbl0446.06001MR517680
  10. [9] Chipman J.S., "The foundations of utility", Econometrica, 28 (1960), 193-224. Zbl0173.48001MR118511
  11. [10] Chipman J.S., "Consumption theory without transitive indifference", in Preferenees, Utility and Demand, New York, Harcourt Brace, 1971. Zbl0293.90003MR456342
  12. [11] Cogis O., "Détermination d'un préordre total contenant un préordre et contenu dans une relation de Ferrers, lorsque leur domaine commun est fini", in Problèmes combinatoires et théorie des graphes, Paris, Editions du Centre National de la Recherche Scientifique, 1978. Zbl0418.06004MR539926
  13. [12] Cogis O., "Graphes de Ferrers et graphes à seuil", in Actes.du Colloque, Algèbre Appliquée et Combinatoire, Grenoble, Université scientifique et médicale de Grenoble, 1979. Zbl0421.05031
  14. [13] Dean R.A., Keller G., "Natural partial orders", Canad. J. Math., 20 (1968), 535-554. Zbl0174.29701MR225686
  15. [14] Fishburn P.C., "Intransitive indifference with unequal indifference intervals ", J. Math. Psychol., 7 (1970), 144-149. Zbl0191.31501MR253942
  16. [15] Fishburn P.C., "Betweenness, orders and interval graphs ", J. pure appl. algebra, 1,2 (1971), 159-178. Zbl0216.30401MR313134
  17. [16] Fishburn P.C., "Semiorders and choice functions", Econometrica, 43, 5-6 (1975), 975-977. Zbl0313.90002MR441219
  18. [17] Fulkerson D.R., Gross O.A., "Incidence matrices and interval graphs", Pacif. J. Math., 15 (1965), 835-855. Zbl0132.21001MR186421
  19. [18] Galanter E.H., "An axiomatic and experimental study of sensory order and measure", Psychol. Rev., 63 (1956), 16-28. 
  20. [19] Gallai T., "Transitiv orientierbare graphen", Acta math. Acad. Sci. hung., 18 (1967), 25-66. Zbl0153.26002MR221974
  21. [20] Ghouila-Houri A. "Caractérisation des graphes non orientés dont on peut orienter les arêtes de manière à obtenir le graphe d'une relation d'ordre", C.R. Acad. Sci. Fr., 254 (1962), 370. Zbl0105.35503
  22. [21] Gilmore P.C., Hoffman A.J., "A characterization of comparability graphs and of interval graphs", Canad. J. Math., 16 (1964), 539-548. Zbl0121.26003MR175811
  23. [22] Goodman N., Structure of appearance, Cambridge, Harvard University Press, 1951. 
  24. [23] Guilbaud G.Th., "Continu expérimental et continu mathématique ", Math. Sci. hum., 62 (1978), 11-33. Zbl0434.06002
  25. [24] Halphen E., "La notion de vraisemblance", Publ. Inst. Statist. Univ. Paris, 4,1 (1955), 41-92. Zbl0067.10302MR70597
  26. [25] Jacquet-Lagreze E.,"Représentation de quasi-ordres et de relations probabilistes transitives sous forme standard et méthodes d'approximation ", Math. Sci. hum., 63 (1978), 5-24. Zbl0413.06001MR522222
  27. [26] Jamison D.T., Lau L.J., "Semiorders and the theory of choice", Econometrica, 41, 5 (1973), 901-912. Zbl0276.90003MR441217
  28. [27] Jamison D.T., Lau L.J., "Semiorders and the theory of choice : a correction", Econometrica, 43, 5-6 (1975), 975-977. Zbl0313.90003MR441219
  29. [28] Krantz D.H., "Extensive measurement in semiorders", Philosophy of Science, 34 (1967), 348-362. MR225687
  30. [29] Lekkerkerker G.G., Boland J.C., "Representation of a finite graph by a set of intervals on the real line", Fund. Math., 51 (1962), 45-64. Zbl0105.17501MR139159
  31. [30] Luce R.D., Semiorders and a theory of utility discrimination ", Econometrica, 24 (1956), 178-191. Zbl0071.14006MR78632
  32. [31] Menuet J., "Quasi-ordres et modélisation des préférences", Note SEMA n°197, (1974), 1-77. 
  33. [32] Mirkin B.G., "Description of some relations on the set of real-line intervals, J. Math. Psychol., 9 (1972), 243-252. Zbl0236.06002MR316345
  34. [33] Monjardet B., Jacquet-Lagreze E., "Modélisation des préférences et quasi-ordres", Math. Sci. hum., 62 (1978), 5-10. Zbl0416.90004
  35. [34] Ore O., Theory of graphs, Providence, American Mathematical Society, 1962. Zbl0105.35401MR150753
  36. [35] Rabinovitch I., "The Scott-Suppes theorem on semiorders", J. Math. Psychol., 15, 2 (1977), 209-212. Zbl0403.06002MR437404
  37. [36] Rabinovitch I., "The dimension of semiorders", J. Comb. Th., (A), 25 (1978), 50-61. Zbl0378.06001MR498294
  38. [37] Rabinovitch I., "An upper bound on the dimension of interval orders", J. Comb. Th., (A), 25 (1978), 68-71. Zbl0378.06002MR485598
  39. [38], Ribeill G., "Equilibre, équivalence, ordre et préordre à distance minimum d'un graphe complet", Math. Sci. hum., 43 (1973), 71-106. Zbl0278.05107MR371726
  40. [39] Riguet J., "Les relations de Ferrers", C.R. Acad. Sci. Fr., 231 (1950), 936-937. Zbl0038.15103MR38936
  41. [40] Roberts F.S., "Indifference graphs", in Proof techniques in graph theory, New York, Academic Press, 1969. Zbl0193.24205MR252267
  42. [41] Roberts F.S., "On non transitive indifférence", J. Math. Psychol., 7 (1970), 243-258. Zbl0205.49102MR258486
  43. [42] Roberts F.S., "On the compatibility between a graph and a simple order", J. Comb. Th., 11 (1971), 28-38. Zbl0177.27003MR281647
  44. [43] Rogers D.G., "Similarity relations on finite ordered sets", J. Comb. Th. (A), 23 (1977), 88-99. Zbl0366.06001MR457297
  45. [44] Scott D., "Measurement structures and linear inequalities", J. Math. Psychol., 1 (1964), 233-247. Zbl0129.12102
  46. [45] Scott D., Suppes P., "Foundational aspects of theories of measurement", J. Symbol. Logic, 23 (1958), 113-128. Zbl0084.24603MR115919
  47. [46] Sen A.K., "Quasi-transitivity, rational choice and collective decision", Rev. Econ. Stud., 36, 3 (1969), 381-393. Zbl0181.47302MR547634
  48. [47] Sharp Jr. H., "Enumeration of transitive, step-type relations ", Acta math. Acad. Sci. Hung., 22 (1971/72), 365-371. Zbl0236.05006MR347627
  49. [48] TrotterJr. W.T., Moore Jr. J.I., "Characterization problems for graphs, partially ordered sets, lattices and families of sets", Disc. Math., 16 (1976), 361-381. Zbl0356.06007MR450140
  50. [49] Wiener N., "Contribution to the theory of relative position", Proc. Cambridge philos. Soc., 17 (1912-14), 441-449. JFM45.1150.10
  51. [50] Wiener N., "Studies in synthetic logic", Proc. Cambridge philos. Soc. 18 (1914 -1916), 14-28. Zbl45.0122.15JFM45.1216.08
  52. [51] Wiener N., "A new theory of measurement : a study in the logic of mathematics", Proc. London math. Soc., 19 (1919 -1920), 181-205. JFM47.0040.01
  53. [52] Wine R.L., Freund J.E., "On the enumeration of decisions patterns involving n means", Ann. math. Statist., 28, 1 (1957), 256-259. Zbl0078.00905MR84231
  54. [53] Fine, "Extrapolation when very little is known", Information and Control, 16 (1970), 331-360. Zbl0205.44003MR325265
  55. [54] Baker K.A., Fishburn P.C., Roberts F.S., "Partial orders of dimension 2, interval orders and interval graphs", Networks2 (1972), 11-28. Zbl0247.06002MR300944

Citations in EuDML Documents

top
  1. O. Cogis, A propos des quasi-ordres - Note
  2. J.-P. Doignon, Sur les représentations minimales des semiordres et des ordres d'intervalles
  3. J. P. Olivier, Liaisons entre les S-relations et les relations de ferrers. Représentations
  4. O. Lavialle, Recherche d'un quasi-ordre médian à partir d'un profil de relations floues
  5. B. Monjardet, E. Jacquet-Lagreze, Modélisation des préférences et quasi-ordres. Avant-propos
  6. Jean-Pierre Barthelemy, Caractérisations axiomatiques de la distance de la différence symétrique entre des relations binaires
  7. B. Monjardet, D. Bresson, Quasi-ordres, intervalles, etc. : une bibliographie
  8. A. Guenoche, B. Monjardet, Méthodes ordinales et combinatoires en analyse des données

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.