Méthodes d'étude de l'adéquation au modèle logistique à un paramètre (modèle de Rasch)

André Flieller

Mathématiques et Sciences Humaines (1994)

  • Volume: 127, page 19-47
  • ISSN: 0987-6936

Abstract

top
Studying model data fit is a problem while employing Rasch model (one-parameter item response model). After a brief presentation of the Rasch model, this article discutes some general problems encountererd in the evaluation of item fit. Then 24 tests of item fit, both graphic and statistical, are presented and evaluated. The necessity of employing several methods of evaluation is enhanced in the conclusion.

How to cite

top

Flieller, André. "Méthodes d'étude de l'adéquation au modèle logistique à un paramètre (modèle de Rasch)." Mathématiques et Sciences Humaines 127 (1994): 19-47. <http://eudml.org/doc/94456>.

@article{Flieller1994,
abstract = {Le modèle de Rasch, ou modèle logistique de réponse à l'item à un paramètre, constitue une avancée méthodologique importante, mais l'étude de l'adéquation de données empiriques à ce modèle ne va pas sans problème. Après une brève présentation du modèle de Rasch, l'article discute certains problèmes généraux rencontrés dans les études d'adéquation. Vingt-quatre tests d'adéquation, graphiques et statistiques sont ensuite présentés et évalués. La nécessité d'employer plusieurs méthodes d'évaluation est soulignée dans la conclusion.},
author = {Flieller, André},
journal = {Mathématiques et Sciences Humaines},
keywords = {graphical methods; chi-square tests; residual based tests; Molenaar tests; one-parameter item response model; Rasch model; tests of item fit},
language = {fre},
pages = {19-47},
publisher = {Ecole des hautes-études en sciences sociales},
title = {Méthodes d'étude de l'adéquation au modèle logistique à un paramètre (modèle de Rasch)},
url = {http://eudml.org/doc/94456},
volume = {127},
year = {1994},
}

TY - JOUR
AU - Flieller, André
TI - Méthodes d'étude de l'adéquation au modèle logistique à un paramètre (modèle de Rasch)
JO - Mathématiques et Sciences Humaines
PY - 1994
PB - Ecole des hautes-études en sciences sociales
VL - 127
SP - 19
EP - 47
AB - Le modèle de Rasch, ou modèle logistique de réponse à l'item à un paramètre, constitue une avancée méthodologique importante, mais l'étude de l'adéquation de données empiriques à ce modèle ne va pas sans problème. Après une brève présentation du modèle de Rasch, l'article discute certains problèmes généraux rencontrés dans les études d'adéquation. Vingt-quatre tests d'adéquation, graphiques et statistiques sont ensuite présentés et évalués. La nécessité d'employer plusieurs méthodes d'évaluation est soulignée dans la conclusion.
LA - fre
KW - graphical methods; chi-square tests; residual based tests; Molenaar tests; one-parameter item response model; Rasch model; tests of item fit
UR - http://eudml.org/doc/94456
ER -

References

top
  1. Andrich, D. (1988). Rasch models for measurement. Newbury Park (CA): Sage Publications. MR982031
  2. Andersen, E.B. (1972, a). The numerical solution of a set of conditional estimation equations. The Journal of the Royal Statistical Society, Series B, 34, 42-54. Zbl0239.62031MR331594
  3. Andersen, E.B. (1973, b). Conditional inference in multiple-choice questionnaires. British Journal of Mathematical and Statistical Psychology, 26, 31-44. MR451601
  4. Andersen, E.B. (1973, a). A goodness of fit test for the Rasch model. Psychometrika, 38, 123-140. Zbl0276.62048MR311064
  5. Baker, F.B. (1987). Methodology review : Item parameter estimation under the one-, two-, and three-parameter logistic models. Applied Psychological Measurement, 11, 111-141. 
  6. Bishop, Y.M.M., Fienberg, S.E. & Holland, P.W. (1975). Discrete multivariate analysis : Theory and practice.Cambridge, MA: MIT Press. Zbl0332.62039MR381130
  7. Bonis, M. de, Féline, A., Lebeaux, M.-O. & Simon, M. (1994). Evaluation de la sévérité de la dépression : Comparaison des modèles logistique, factoriel et implicite. In M. Huteau (Ed.), Les techniques d'évaluation des personnes (68-70). Paris: E.A.P. 
  8. Bock, R.D. & Aitkin, M. (1981). Marginal maximum likehood estimation of item parameters : An application of an EM algorithm. Psychometrika, 46, 443-459. MR668311
  9. Cohen A.S. & Kim, S.-H. (1993). A comparison of Lord's χ2 and Raju's area measures in detection of DIF. Applied Psychological Measurement, 17, 39-52. 
  10. Dickes, P. (1983). Modèle de Rasch pour items dichotomiques : Théorie, technique et application à la mesure de la pauvreté. Cahiers Economiques de Nancy, 11, 73-116. 
  11. Dickes, P. & Hausman, P. (1983). Définir et mesurer la délinquance juvénile. Bulletin de Psychologie, n° 359, 441-455. 
  12. Divgi D.R. (1981). Model free evaluation of equating and scaling. Applied Psychological Measurement, 5, 203-208. 
  13. Elliot, C.D., Murray, D.J. & Saunders, R. (1977). Goodness of fit to the Rasch model as a criterion of unidimensionality. Manchester: University of Manchester. 
  14. Flieller, A. (1988). Application du modèle de Rasch à un problème de comparaison de générations. Bulletin de Psychologie, 42, 86-91. 
  15. Fraser, C. & McDonald, R.P. (1988). NORHAM : Least squares item factor analysis. Multivariate Behavioral Research, 23, 267-269. 
  16. Fischer, G.H. (1974). Einführung in die Theorie psychologischer Tests.Bern: Verlag Hans Huber. Zbl0315.92016
  17. Fischer, G.H. & Schleiblechner, H.H. (1970). Algorithmen und Programmen für das probabilistische Testmodel von Rasch. Psychologische Beiträge, 12, 23-51. 
  18. Goldstein, H. (1980). Dimensionality, bias, independence and measurement scale problems in latent test score models. British Journal of Mathematical and Statistical Psychology, 33, 234-246. MR604075
  19. Goldstein, H. & Wood, R. (1989). Five decades of item response modelling. British Journal of Mathematical and Statistical Psychology, 42, 139-167. Zbl0718.62261MR1066347
  20. Gustafsson, J.E. (1980, a). A solution of the conditional estimation problem for long tests in the Rasch model for dichotomous items. Educational and Psychological Measurement, 40, 377-385. 
  21. Gustafsson, J.E. (1980, b). Testing and obtaining fit of data to the Rasch model. British Journal of Mathematical and Statistical Psychology, 32, 205-233. 
  22. Gustafsson, J.E. & Linblad, T. (1978). The Rasch model for dichotomous items : A solution of the conditional estimation problem for long tests and thome thoughts about item screening procedures. Reports from the Institute of Education, University of Göteborg, n° 67. 
  23. Hambleton, R.K. (1969). An empirical investigation of the Rasch test theory model. Unpublished doctoral dissertation, University of Toronto (Canada). 
  24. Hambleton, R.K. (1989). Principles and selected applications of item response theory. in R. L. Linn, Educational measurement (3rd ed.) (p. 147-200). New York: Macmillan. 
  25. Hambleton, R.K. & Murray, L. (1983). Some goodness of fit investigations for item response models, in R. K. Hambleton (Ed.), Applications of item response theory (p. 71-94). Vancouver: Educational Research Institute of British Columbia. 
  26. Hambleton, R.K. & Swaminathan, H. (1985). Item Response Theory. Boston (MA): Kluver-Nihoff Publishing. Zbl1256.91048
  27. Hambleton, R.K. & Swaminathan, H. & Rogers, H.J. (1991). Fundamentals of Item Response Theory.Newbury Park (CA): Sage Publications. Zbl1256.91048
  28. Hattie, J. (1985). Methodology review : Assessing unidimensionality of tests and items. Applied Psychological Measurement, 9, 139-164. 
  29. Ludlow, L.H. (1985). A strategy for the graphical representation of Rasch model residuals. Educational and Psychological Measurement, 45, 851-859. 
  30. Ludlow, L.H. (1986). Graphical analysis of item response theory residuals. Applied Psychological Measurement, 10, 217-229. 
  31. Lord, F. (1980). Applications of Item Response Theory to practical testing problems. Hillsdale (N.J.): Lawrence Erlbaum. 
  32. McDonald, R., P. (1982). Linear versus nonlinear models of item response theory. Applied Psychological Measurement, 6, 379-396. 
  33. McKinley, R.L. & Mills C.N. (1985). A comparison of several goodness-of-fit statistics. Applied Psychological Measurement, 9, 49-57. 
  34. McLaughlin M.E. & Drasgow, F. (1987). Lord's Chi-Square Test of item bias with estimated and with known person parameters. Applied Psychological Measurement, 11, 161-173. 
  35. Mead, R. (1976). Assessment of fit data to the Rasch model. Paper presented at the annual meeting of the American Educational Research Association, San Francisco. 
  36. Martin-Löf (1973, oktober). Statistika Modeller. Anteckningar från seminarier Läsaret 1969-1970 utarbetabe av Rolf Sunberg. Stockholm: Instituet för Försäkringsmathematik och Matematisk Statistik vid Stockholms Universitet. 
  37. Mislevy, R.J. & Bock, R.D. (1990). Bilog 3 (2nd ed). Mooresville (IN): Scientific Software Inc. 
  38. Molenaar, I.W. (1983). Some improved diagnostics for failure of the Rasch model. Psychometrika, 48, 49-72. 
  39. Molenaar, I.W. (1990). P.M.L. : User's manual PC version. Groningen: ProGAMMA. 
  40. Rasch, G. (1960/1980). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research (1st ed.) / Chicago: University Press (2nd ed.). 
  41. Rasch, G. (1977). On specific objectivity : an attempt at formalizing the request for generality and validity of scientific statements. Danish Yearbook of Philosophy, 14, 58-94. 
  42. Reiser, M. (1989). An application of the item-response model to psychiatric epidemiology. Sociological Methods and Research, 18, 66-103. 
  43. Reuchlin, M. (1992). Introduction à la recherche en psychologie.Paris: Nathan. 
  44. Rogers, H.J. & Hattie, J.A. (1987). A Monte Carlo investigation of several person and item fit statitistics for item response models. Applied Psychological Measurement, 11, 47-57. 
  45. Stene E. (1969). An exact test for stochastic independence of responses in an item analysis model. Symposium on Rasch models, Køge (Denmark). 
  46. Stocking, M.L. (1990). Specifying optimum examinees for item parameter estimation in item response theory. Psychometrika, 55, 461-475. 
  47. Swaminathan, H. & Gifford, J.A. (1982). Bayesian estimation in the Rasch model. Journal of Educational Statistics, 7, 175-191. 
  48. Thissen, D. (1982). Marginal maximum likehood estimation for the one-parameter logistic model. Psychometrika, 47,175-186. Zbl0494.62095
  49. Traub, R.E. & Lam, R. (1985). Latent structure and item sampling models for testing. Annual Review of Psychology, 36, 19-48. 
  50. Van den Vijven, F.R. (1986). The robustness of Rasch estimates. Applied Psychological Measurement, 10, 45-57. 
  51. Van den Wollenberg, A.L. (1979). The Rasch model and time limit tests. Doctoral dissertation. University of Nijmegen (The Netherlands): Student papers. 
  52. Van den Wollenberg, A.L. (1982, a). A simple and effective method to test the dimensionality axiom of the Rasch model. Applied Psychological Measurement, 6, 83-91. 
  53. Van den Wollenberg, A.L. (1982, b). Two new test statistics for the Rasch model. Psychometrika, 47, 123-140. Zbl0489.62098
  54. Waller, M.I. (1981). A procedure for comparing latent trait models. Journal of Educational Measurement, 18, 119-125. 
  55. Whitely, S.E. (1980). Latent trait models in the study of intelligence. Intelligence, 4, 97-132. 
  56. Wright, B.D. (1985). Rasch measurement models. In T.H. Husén & T.N. Postlethwaite (Eds). The International Encyclopedia of Education, 1st ed. (4177-4181). Oxford: Pergamon Press. 
  57. Wright, B.D. & Douglas, G.A. (1977). Conditional versus unconditional procedures for sample-free item analysis. Educational and Psychological Measurement, 37, 573-586. 
  58. Wright, B.D., Mead, R.J. & Bell, S.R. (1979). BICAL : Calibrating items with the Rasch model. Statistical Research Memorandum N° 23B.Chicago: University of Chicago, School of Education. 
  59. Wright, B.D. & Panchapakesan, N. (1969). A procedure for sample-free item analysis. Educational and Psychological Measurement, 29, 23-57. 
  60. Wright, B.D. & Stone, M.H. (1979). Best test Design. Chicago: MESA Press. 
  61. Yen, W.M. (1981). Using simulation results to choose a latent trait model. Applied Psychological Measurement, 5, 245-262. 
  62. Yen W.M. (1987).A comparison of the efficiency and accuracy of bilog and logist. Psychometrika, 52, 275-291. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.