Approximation properties and universal Banach spaces

Przemyslaw Wojtaszczyk

Mémoires de la Société Mathématique de France (1972)

  • Volume: 31-32, page 395-398
  • ISSN: 0249-633X

How to cite

top

Wojtaszczyk, Przemyslaw. "Approximation properties and universal Banach spaces." Mémoires de la Société Mathématique de France 31-32 (1972): 395-398. <http://eudml.org/doc/94638>.

@article{Wojtaszczyk1972,
author = {Wojtaszczyk, Przemyslaw},
journal = {Mémoires de la Société Mathématique de France},
language = {eng},
pages = {395-398},
publisher = {Société mathématique de France},
title = {Approximation properties and universal Banach spaces},
url = {http://eudml.org/doc/94638},
volume = {31-32},
year = {1972},
}

TY - JOUR
AU - Wojtaszczyk, Przemyslaw
TI - Approximation properties and universal Banach spaces
JO - Mémoires de la Société Mathématique de France
PY - 1972
PB - Société mathématique de France
VL - 31-32
SP - 395
EP - 398
LA - eng
UR - http://eudml.org/doc/94638
ER -

References

top
  1. [1] BANACH (S.) and MAZUR (S.). — Zur theorie der linearen Dimension, Studia Math. 4, 1933, p. 100-112. Zbl0008.31701JFM59.1075.01
  2. [2] GROTHENDIECK (A.). — Produits tensoriels topologiques et espaces nucléaires Mem. Amer. Math. Soc. n° 16, 1955. Zbl0123.30301MR17,763c
  3. [3] JOHNSON (W.B.). — Factoring compact operators, Israël J. Math. 9, 1971, p. 337-45 Zbl0236.47045MR44 #7318
  4. [4] JOHNSON (W.B.), ROSENTHAL (H.), ZIPPIN (M.). — On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9, 1971, p. 488-506. Zbl0217.16103MR43 #6702
  5. [5] KADEC (M.I.). — On complementably universal spaces. Studia Math. 40, 1971, p. 85-89. Zbl0218.46015MR47 #2318
  6. [6] KWAPIEN (S.) and PELCZYNSKI (A.). — The main triangle projection in matrix spaces and its applications, Studia Math. 34, 1970, p. 43-68. Zbl0189.43505MR42 #5011
  7. [7] PELCZYNSKI (A.). — Universal bases, Studia Math. 32, 1969, p. 247-68. Zbl0185.37401MR39 #3290
  8. [8] PELCZYNSKI (A.). — Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40, 1971, p. 239-43. Zbl0223.46019MR46 #7867
  9. [9] PELCZYNSKI (A.) and WOJTASZCZYK (P.). — Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspace Studia Math. 40, 1971, p. 91-108. Zbl0221.46014MR47 #2319
  10. [10] SCHAUDER (J.). — Zur theorie stetiger Abbildungen in funktionenräumen, Math. Zeitsch. 26, 1927, p. 47-65. Zbl53.0374.01JFM53.0374.01
  11. [11] SINGER (I.). — Bases in Banach spaces I, Springer-Verlag Berlin-Heidelberg-New-York, 1970. Zbl0198.16601MR45 #7451
  12. [12] WOJTASZCZYK (P.). — Some remarks on the Gurarij space, (to appear in Studia Math. 41.) Zbl0233.46024MR46 #7860

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.