Nonlinear structures determined by measures on Banach spaces

K. David Elworthy

Mémoires de la Société Mathématique de France (1976)

  • Volume: 46, page 121-130
  • ISSN: 0249-633X

How to cite

top

Elworthy, K. David. "Nonlinear structures determined by measures on Banach spaces." Mémoires de la Société Mathématique de France 46 (1976): 121-130. <http://eudml.org/doc/94720>.

@article{Elworthy1976,
author = {Elworthy, K. David},
journal = {Mémoires de la Société Mathématique de France},
language = {eng},
pages = {121-130},
publisher = {Société mathématique de France},
title = {Nonlinear structures determined by measures on Banach spaces},
url = {http://eudml.org/doc/94720},
volume = {46},
year = {1976},
}

TY - JOUR
AU - Elworthy, K. David
TI - Nonlinear structures determined by measures on Banach spaces
JO - Mémoires de la Société Mathématique de France
PY - 1976
PB - Société mathématique de France
VL - 46
SP - 121
EP - 130
LA - eng
UR - http://eudml.org/doc/94720
ER -

References

top
  1. [1] C. BESSAGA, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sc. XIV, 1 (1966), 27-31. Zbl0151.17703MR33 #1862
  2. [2] C. BORELL, Convex measures on locally convex spaces, Arkiv for Matematik (12) (1974), 239-252. Zbl0297.60004MR52 #9311
  3. [3] D. BURGHELEA and N.H. KUIPER, Hilbert manifolds, Ann. of Math. 90 (1969), 379-417. Zbl0195.53501MR40 #6589
  4. [4] R.M. DUDLEY, J. FELDMAN, and L. LECAM, On seminorms and probabilities, and abstract Wiener spaces, Annals of Math. 93 (1971), 390-408. Zbl0193.44603MR43 #4995
  5. [5] J. EELLS, Integration on Banach manifolds, Proc. 13th Biennial Seminar of the Canadian Mathematical Congress, Halifax, (1971), 41-49. Zbl0268.58003MR51 #9112
  6. [6] K.D. ELWORTHY, Gaussian measures on Banach spaces and manifolds, Proc. 1972, Summer Institute on Global Analysis, Trieste: Global Analysis and its Applications, Vol. II, 151-166, International Atomic Energy, Vienna, (1974). Zbl0319.58007
  7. [7] K.D. ELWORTHY, Measures on infinite dimensional manifolds, Functional Integration and its applications, (A.M. Arthurs, Ed.) Oxford University Press, (1975). 
  8. [8] L. GROSS, Measurable functions on Hilbert space, Trans. A.M.S. 105 (1962), 372-390. Zbl0178.50001MR26 #5121
  9. [9] L. GROSS, Potential theory on Hilbert space, J. of Functional Anal. 1, (1967) 123-181. Zbl0165.16403MR37 #3331
  10. [10] H.H. KUO, Integration theory on infinite dimensional manifolds, Trans. A.M.S. 159 (1971), 57-78. Zbl0222.28007MR45 #4459
  11. [11] H.H. KUO, Gaussian measures in Banach spaces, Lecture Notes in Math. 463, Springer-Verlag. Zbl0306.28010MR57 #1628
  12. [12] K.R. PARTHASARATHY, Probability measures on metric spaces, Academic Press, 1967. Zbl0153.19101MR37 #2271
  13. [13] J. PEETRE, Interpolation functors and Banach couples, Actes, Congres intern. Math., Nice, 1970, Tome 2, 373-378. Zbl0224.46040MR54 #13590
  14. [14] R. RAMER, On nonlinear transformations of Gaussian measures, J. of Functional Anal. 15, (1974), 166-187. Zbl0288.28011MR50 #2438
  15. [15] L. SCHWARTZ, Radon measures on arbitrary topological spaces and cylindrical measures, Tata Institute of Fundamental Research Studies in Mathematics 6, Oxford University Press., 1973. Zbl0298.28001MR54 #14030
  16. [16] A.M. VERSIK, Duality in the theory of measure in linear spaces, Soviet Math. Dokl. Vol. 7, (1966), n° 5, 1210-1214 = Dokl. Nauk SSSR, Tom 170 (1966), n° 3. Zbl0159.42502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.