Quadratic forms and sesquilinear forms in infinite dimensional spaces. Witt type theorems in spaces of denumerably infinite dimension

Herbert Gross

Mémoires de la Société Mathématique de France (1976)

  • Volume: 48, page 21-33
  • ISSN: 0249-633X

How to cite

top

Gross, Herbert. "Quadratic forms and sesquilinear forms in infinite dimensional spaces. Witt type theorems in spaces of denumerably infinite dimension." Mémoires de la Société Mathématique de France 48 (1976): 21-33. <http://eudml.org/doc/94737>.

@article{Gross1976,
author = {Gross, Herbert},
journal = {Mémoires de la Société Mathématique de France},
language = {eng},
pages = {21-33},
publisher = {Société mathématique de France},
title = {Quadratic forms and sesquilinear forms in infinite dimensional spaces. Witt type theorems in spaces of denumerably infinite dimension},
url = {http://eudml.org/doc/94737},
volume = {48},
year = {1976},
}

TY - JOUR
AU - Gross, Herbert
TI - Quadratic forms and sesquilinear forms in infinite dimensional spaces. Witt type theorems in spaces of denumerably infinite dimension
JO - Mémoires de la Société Mathématique de France
PY - 1976
PB - Société mathématique de France
VL - 48
SP - 21
EP - 33
LA - eng
UR - http://eudml.org/doc/94737
ER -

References

top
  1. [1] W. ALLENSPACH, Erweiterung von Isometrien in alternierenden Räumen, Zürich University Thesis 1973. 
  2. [2] G. BIRKHOFF, Lattice Theory, AMS Providence, Rhode Island, 1973. 
  3. [3] N. BOURBAKI, Eléments de Mathématiques, Algèbre Chap. IX, Formes sesquilinéaires et formes quadratiques, Hermann, Paris, 1959. 
  4. [4] L. BRAND, Erweiterung von algebraischen Isometrien in sesquilinearen Räumen. Zürich University Thesis 1974. 
  5. [5] A. FRÖHLICH, Quadratic forms à la local theory. Proc. Camb. Phil. Soc. (1967), 63, 579-586. Zbl0153.05701MR35 #5389
  6. [6] H. GROSS, Sesquilinear forms and quadratic forms in infinite dimensional spaces, Vol. 1 : Spaces of countably infinite dimension. To appear. Zbl0356.15021
  7. [7] H. GROSS, Der Euklidische Defekt bei quadratischen Räumen, Math. Ann. 180, 95-137 (1969). Zbl0162.04302MR39 #6823
  8. [8] H. GROSS, On Witt's Theorem in the denumerably infinite case, Math. Ann. 170, 145-165 (1967). Zbl0153.05601MR34 #5848
  9. [9] H. GROSS and H.R. FISCHER, Quadratic Forms and linear topologies I, Math. Ann. 157, 296-325 (1964). Zbl0142.00403MR30 #3149
  10. [10] I. KAPLANSKY, Forms in infinite-dimensional spaces, Ann. Acad. Bras. Ci. 22, 1-17 (1950). MR12,238a
  11. [11] H.A. KELLER, On the lattice of all closed subspaces of a Hermitean Space, Rev. Soc. Mat. Chile, Vol. 2 (1976). 
  12. [12] S. LANG, On quasi algebraic closure, Ann. of Math. (1952) 55, 373-390. Important improvements can be found in M. Nagata : Note on a paper of Lang concerning quasi algebraic closure. Mem. Univ. Kyoto Ser. A 30 (1957) 237-241. For further developments and references see G. Terjanian : Dimension arithmétique d'un corps. Journ. of Algebra 22 (1972) 517-545 ; further G. Maxwell : A note on Artin's Diophantine Conjecture. Canad. Math. Bull. (1970) 13, 119-120. Zbl0046.26202
  13. [13] F. MAEDA and S. MAEDA, Theory of Symmetric Lattices, Springer NY 1970. Zbl0219.06002MR44 #123
  14. [14] U. SCHNEIDER, Beiträge zur Theorie der sesquilinearen Räume unendlicher Dimension. Zürich University Thesis 1975. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.