Fixed point theorems without convexity

Jean-Paul Penot

Mémoires de la Société Mathématique de France (1979)

  • Volume: 60, page 129-152
  • ISSN: 0249-633X

How to cite

top

Penot, Jean-Paul. "Fixed point theorems without convexity." Mémoires de la Société Mathématique de France 60 (1979): 129-152. <http://eudml.org/doc/94797>.

@article{Penot1979,
author = {Penot, Jean-Paul},
journal = {Mémoires de la Société Mathématique de France},
keywords = {tangent cone; contractive multi-function; non-expansion; critical point},
language = {eng},
pages = {129-152},
publisher = {Société mathématique de France},
title = {Fixed point theorems without convexity},
url = {http://eudml.org/doc/94797},
volume = {60},
year = {1979},
}

TY - JOUR
AU - Penot, Jean-Paul
TI - Fixed point theorems without convexity
JO - Mémoires de la Société Mathématique de France
PY - 1979
PB - Société mathématique de France
VL - 60
SP - 129
EP - 152
LA - eng
KW - tangent cone; contractive multi-function; non-expansion; critical point
UR - http://eudml.org/doc/94797
ER -

References

top
  1. AMANN H. (1975) : Nonlinear operators in ordered Banach spaces and some applications to nonlinear boundary value problems in Nonlinear operators and the calculus of variations. Bruxelles 1975, Lecture notes in math n° 543, Springer Verlag. New-York, 1-55. Zbl0345.47045MR58 #23793
  2. ASSAD N.A. - KIRK W.A. (1972) : Fixed point theorems for set-valued mappings of contractive type. Pacific J. Math. 43 (3), 553-561. Zbl0239.54032MR49 #6210
  3. AUBIN J-P. (1977) : Microcours : gradients généralisés. Univ. de Montréal. Cahiers de l'IRMADE. 
  4. AUBIN J-P. : Mathematical methods of game and economic theory (to be published) by North Holland. Zbl0452.90093
  5. BELLUCE L.P. - KIRK W.A. (1969) : Some fixed point theorems in metric and Banach spaces. Canadian Bull. Math. 12, 481-492. Zbl0195.42901MR40 #3388
  6. BIRKHOFF G. (1948) : Lattice theory. Amer. Math. Soc. Colloq. Publ. XXV, New-York. Zbl0033.10103MR10,673a
  7. BONY J.M. (1969) : Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier. Grenoble 19, 277-304. Zbl0176.09703MR41 #7486
  8. BORWEIN J. - O'BRIEN R. (1976) : Tangent cones and convexity. Canad. Math. Bull. 19 (3) 257-261. Zbl0364.90079MR56 #12835
  9. BOURGIN D.G. (1973) : Fixed points and minimax theorems. Pacific. J. Math 45, 403-412. Zbl0275.55011MR49 #1512
  10. BREZIS H. (1965) : Points fixes. Séminaire Choquet 4è année, 11-01, 11-23. Zbl0151.20601
  11. BREZIS H. (1967) : Sur certains problèmes non linéaires. Séminaire Choquet, Paris. 6e année, 18-01, 18-18. Zbl0169.18702MR38 #5072
  12. BREZIS H. - BROWDER F.E. (1976) : A general ordering principle in nonlinear functional analysis. Advances in Math 21, 355-168. Zbl0339.47030MR54 #13641
  13. BRODSKǏI M.S. - MILMAN D.P. (1948) : On the center of a convex set (russian). Dokl. Akad. Nauk SSSR, 59, 837-840. Zbl0030.39603
  14. BRØNSTED A. (1976) : Fixed points and partial orders. Proc. Amer. Math. Soc. 60 365-366. Zbl0343.47043MR54 #5915
  15. BROWDER F.E. (1965) : Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. 54, 1041-1044. Zbl0128.35801MR32 #4574
  16. BROWDER F.E. (1965) : Fixed points theorems on infinite dimensional manifolds. Trans. Amer. Math. Soc. 119, 179-194. Zbl0132.18803MR33 #3287
  17. BROWDER F.E. (1967) : Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Amer. Math. Soc. 73, 875-882. Zbl0176.45302MR38 #581
  18. BROWDER F.E. (1968) : The fixed-point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177, 283-301. Zbl0176.45204MR37 #4679
  19. BROWDER F.E. (1975) : The Lefschetz fixed point theorem and asymptotic fixed point theorems in Partial Differential Equations and related topics. Lecture Notes in Math. n° 446, Springer-Verlag, New-York, 96-122. Zbl0312.55007MR55 #6245
  20. BROWN R.F. (1965) : On the Lefschetz fixed point theorem. Amer. J. Math. 87, 1-10. Zbl0134.19003MR30 #5320
  21. BROWN R.F. (1971) : The Lefschetz fixed point theorem, Scott, Foresman., Glenview, Illinois. Zbl0216.19601MR44 #1023
  22. CARISTI J. (1975) : Fixed point theorem for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215, 241-251. Zbl0305.47029MR52 #15132
  23. CARISTI J. - KIRK W.A. (1975) : Geometric fixed point theory and inwardness conditions in the Geometry of metric and linear spaces, Michigan 1974, L.M. Kelly editor, Lecture Notes in Math. N° 490, Springer Verlag New-York, 74-83. Zbl0315.54052MR53 #3806
  24. CONTI G. - NISTRI P. (1975) : A fixed point theorem for non compact acyclic-valued maps. Rend. Accad. Sc. Fis. Mat. Napoli 42 (4), 510-517. Zbl0378.47029MR55 #8896
  25. CORNET B. (1975) : Fixed point and surjectivity theorems for correspondances ; applications. Cahiers Math. de la décision, Univ. Paris-Dauphine n° 7521. 
  26. DEIMLING K. (1974) : Zeros of accretive operators. Manuscripta Math 13, 365-374. Zbl0288.47047MR50 #3030
  27. DOTSON W.G. (1972) : Fixed point theorems for non expansive mappings on star-shaped subsets of Banach spaces. J. London Math Soc. 4 (2), 408-410. Zbl0229.47047MR45 #5837
  28. EDELSTEIN M. (1961) : An extension of Banach's contraction principle. Proc. Amer. Math. Soc. 12, 7-10. Zbl0096.17101MR22 #11375
  29. EDELSTEIN M. (1962) : On fixed and periodic points under contractive mappings. J. London Math. Soc. 37, 74-79. Zbl0113.16503MR24 #A2936
  30. EDELSTEIN M. (1964) : On non expansive mappings. Proc. Amer. Math. Soc. 15, 689-695. Zbl0124.16004MR29 #2780
  31. EDELSTEIN M. (1968) : On nearest points of sets in uniformly convex Banach spaces. J. London Math. Soc. 43, 375-377. Zbl0183.40403MR37 #1954
  32. EDELSTEIN M. (1975) : On some aspects of fixed point theory in Banach spaces in the Geometry of metric and linear spaces, Michigan 1974, L.M. Kelly editor. Lecture notes in Math. n° 490, Springer-Verlag New-York, 84-90. Zbl0316.47036MR53 #6368
  33. EILENBERG S. - MONTGOMERY D. (1946) : Fixed point theorems for multi-valued transformations. Amer. J. Math. 58, 214-222. Zbl0060.40203MR8,51a
  34. EISENFELD J. - LAKSHMIKANTHAM V. (1976) : Fixed point theorems on closed sets through abstract cones. Univ. of Texas at Arlington, tech. report n° 89. 
  35. EKELAND I. (1974) : On the variational principle. J. Math. Anal. and Appl. 47, 324-353. Zbl0286.49015MR49 #11344
  36. FAKHOURY H. (1972) : Sélections linéaires associées au théorème de Hahn-Banach. J. Funct. Anal. 11, 436-452. Zbl0252.46023MR50 #955
  37. FAN K. (1961) : A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 305-310. Zbl0093.36701MR24 #A1120
  38. FAN K. (1969) : Extension of two fixed points of F.E. Browder. Math. 2 112, 234-240. Zbl0185.39503MR40 #4830
  39. FORT Jr. M.K. (1950) : Essential and non essential fixed points. Amer. J. Math. 72, 315-322. Zbl0036.13001MR11,609b
  40. FOURNIER G. (1975) : Généralisation du théorème de Lefschetz pour des espaces non compacts I, II, III, Bull. Acad. Pol. Sci. 23 (6), 693-699 ; 701-706 ; 707-711. Zbl0307.55006MR51 #14031
  41. GATICA J.A. (1974) : Fixed point theorems for k-set contractions and pseudo-contractive mappings. J. Math. Anal. Appl. 46 (3), 555-564. Zbl0277.47035MR49 #11328
  42. GLICKSBERG I.L. (1952) : A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Amer. Math. Soc. 3, 170-174. Zbl0046.12103MR13,764g
  43. GOEBEL K. (1969) : An elementary proof of the fixed point theorem of Browder and Kirk. Michigan Math. J. 16, 381-384. Zbl0174.19304MR40 #4831
  44. GOHDE D. (1965) : Zum prinzip der kontraktiven abbildung. Math. Nach. 30, 251-258. Zbl0127.08005MR32 #8129
  45. GORNIEWICZ L. (1973) : Some consequences of the Lefschetz fixed point theorem. Bull. Acad. Pol. Sc. 21 (2) 165-170. Zbl0249.54022MR48 #3036
  46. GOSSEZ J-P. - LAMI-DOZO E. (1969) : Structure normale et base de Schauder. Bull. CI. Sc. Ac. R. Belgique 55, 673-681. Zbl0192.46903MR41 #795
  47. GOSSEZ J.P. - LAMI-DOZO E. (1972) : Some geometric properties related to the fixed point theory for nonexpansive mappings. Pacific J. Math 40 (3), 565-573. Zbl0223.47025MR46 #9815
  48. GRANAS A. (1972) : Generalizing the Hopf-Lefschetz fixed point theorem for non-compact A.N.R.S. Symp. Infinite dimensional topology, Baton Rouge, R.D. Anderson ed. Annals of Math. Study n°69, Princeton Univ. Press, Princeton New-Jersey, 119-130. Zbl0235.55008MR53 #14475
  49. GRANAS A. (1976) : Sur la méthode de continuité de Poincaré, C.R. Acad. Sci. Paris 282, 983-985. Zbl0348.47039MR53 #11664
  50. HALPERN B.R. (1965) : Fixed point theorems for outward maps. Ph. D. Thesis, Univ. Calif. Los Angeles. 
  51. HALPERN B.R. (1970) : Fixed point theorems for set-valued maps in infinite dimensional spaces, Math. Ann. 189, 87-98. Zbl0191.14701MR42 #8357
  52. HALPERN B.R. - BERGMAN G. (1968) : A fixed point theorem for inward and outward maps. Trans. Amer. Math. Soc. 130, 353-358. Zbl0153.45602MR36 #4397
  53. HIMMELBERG C.J., PORTER J.R., VAN VLECK F.S. (1969) : Fixed point theorems for condensing multifunctions. Proc. Amer. Math. Soc. 23, 635-641, MR 39 # 7480. Zbl0195.14902MR39 #7480
  54. HOLMES R.D. (1976) : Fixed points for local radial contractions, in Swaninathan S. (1976). pp. 79-89. Zbl0373.54041
  55. JAWOROWSKI J.W. (1970) : Set-valued fixed points theorems for approximative retracts in Set-valued mappings, selections, and topological properties of 2X Lecture notes in Math. n° 171, Springer Verlag, New-York, 34-390. Zbl0206.52101MR43 #4027
  56. KAKUTANI S. (1938) : Two fixed point theorems concerning bicompact convex sets. Proc. Imp. Acad. Tokyo 14, 242-245. Zbl0020.07906JFM64.1101.03
  57. KIRK W.A. (1965) : A fixed point theorem for mappings which do not increase distance. Amer. Math. Monthly 72, 1004-1006. Zbl0141.32402MR32 #6436
  58. KIRK W.A. (1970) : Fixed points theorems for non expansive mappings. in Nonlinear functional analysis, F.E. Browder editor. Proc. Symp. Pure Math n° 18, vol. 1, Amer. Math. Soc. Providence R.I., 162-134. Zbl0227.47046MR42 #6677
  59. KIRK W.A. (1976) : Caristi's fixed point theorem and the theory of normal solvability. in Fixed point theory and its applications, S. Swaminanthan ed. Academic Press, New-York, 109-120. Zbl0377.47042MR56 #13002
  60. KNASTER B. (1928) : Un théorème sur les fonctions d'ensembles. Ann. Soc. Pol. Math. 6, 133-134. Zbl54.0091.04JFM54.0091.04
  61. KUHFITTIG P. : Fixed point theorems for mappings with non convex domain and range. Rocky Mountain J. Math. 7 (I) (1977) 141-145. Zbl0346.47047MR55 #9062
  62. LASRY J.M. - ROBERT R. (1976) : Analyse non lineaire multivoque. Cahiers Math. de la Décision, Univ. Paris-Dauphine n° 7611. 
  63. LEADER S. (1977) : Fixed points for operators on metric spaces with conditional uniform equivalence of orbits. J. Math. Anal. Appl. 61 (2), 466-474. Zbl0368.54016MR58 #7590
  64. LERAY J. (1972) : Fixed point index and Lefschetz number. Symp. infinite dimensional topology. Baton-Rouge, R.D. Anderson ed. Annals of Math. Studies n°69, Princeton Univ. Press, Princeton New-Jersey, 219-234. Zbl0235.55007MR53 #11646
  65. LIM T.C. (1976) : Remarks on some fixed point theorems. Proc. Amer. Math. Soc. 60 (1) 179-182. Zbl0346.47046MR54 #11120
  66. LIM T.C. (1977) : Fixed point theorems for mappings of non expansive type. Proc. Amer. Math. Soc. 66 (1) 69-74. Zbl0371.47043MR57 #13593
  67. MARTELLI M. - VIGNOLI A. (1974) : A generalization of Leray-Schauder condition. Atti. Accad. Naz. Lincei (8) 57 (5), 374-379. Zbl0326.47054MR54 #5918
  68. MARKIN J.T. (1969) : A fixed point theorem for set valued mappings. Bull. Amer. Math. Soc. 74 (4), 639-640. Zbl0159.19903MR37 #3409
  69. MARTIN R.M. Jr (1973) : Differential equations on closed subsets of a Banach space Trans. Amer. Math. Soc. 179, 399-414. Zbl0293.34092MR47 #7537
  70. MAYER C. (1965) : Points invariants dans les espaces localement convexes. Séminaire Choquet 4e année, 10-01, 10-11. Zbl0151.20503
  71. MEIR A. - KEELER E. (1969) : A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326-329, MR 40#3530. Zbl0194.44904MR40 #3530
  72. MEYER P.A. (1966) : Probabilités et potentiel. Act. Sci. et Ind. N° 1318, Hermann Paris. Zbl0138.10402MR34 #5118
  73. NADLER S.B. (1969) : Multivalued contraction mappings. Pacific J. Math. 30, 475-488. Zbl0187.45002MR40 #8035
  74. OPIAL Z. (1967) : Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73, 591-597. Zbl0179.19902MR35 #2183
  75. OPIAL Z. (1967) : Nonexpansive and monotone mappings in Banach spaces. Lecture Notes 67-1, Division of Applied Math. Brown Univ. Zbl0179.19902
  76. PENOT J.P. (1976) : A short constructive proof of Caristi's fixed point theorem. Publications Math. de Pau, X-1 - X-3. 
  77. PETRYSHYN V.W. (1973) : Fixed point theorems for various classes of 1-set contractive and 1-ball contractive mappings in Banach spaces. Trans. Amer. Math. Soc. 182, 323-352. Zbl0277.47033MR48 #7030
  78. PETRYSHYN V.W. - FITZPATRICK P.M. (1974) : Fixed-point theorems for multivalued non-compact inward maps. J. Math. Anal. and Appl. 46 (3), 756-767. Zbl0287.47038
  79. POWERS M.J. (1970) : Multivalued mappings and Lefschetz fixed point theorems. Proc. Cambridge Phil. Soc. 68, 619-630. Zbl0201.25001MR41 #9248
  80. POWERS M.J. (1972) : Lefschetz fixed point theorems for a new class of multivalued maps. Pacific J. Math 42, 211-220. Zbl0244.55007MR48 #12508
  81. REICH S. (1972) : Fixed points in locally convex spaces, Math. Z 125, 17-31. Zbl0216.17302MR46 #6110
  82. REICH S. (1976) : On fixed point theorems obtained from existence theorems for differential equations. J. Math. Anal. Appl. 54, 26-36. Zbl0328.47034MR53 #6373
  83. REICH S. : Approximate selections, best approximations, fixed points, and invariant sets (to appear). Zbl0375.47031
  84. REINERMANN J. (1972) : Fixed point theorems for generalized contractions. Comment. Math. Univ. Carol 13 (4) 617-627. Zbl0256.47039MR49 #1244
  85. REINERMANN J. - SCHŐNEBERG R. (1976) : Some results and problems in the fixed point theory for nonexpansive and pseudocontractive mappings in Hilbert space. in Swaminathan (1976) 187-196. Zbl0375.47034
  86. ROGALSKI M. (1972) : Surjectivité d'applications multivoques dans les convexes compacts. Bull. Soc. Math. de France, 96, 83-87. Zbl0227.54012MR48 #2706
  87. SEHGAL V.M. (1969) : A fixed point theorem for mappings with a contractive iterate. Proc. Amer. Math. Soc. 23, 631-634. Zbl0186.56503MR40 #3531
  88. SEHGAL V.M. (1977) : A simple proof of a theorem of Ky Fan. Proc. Amer. Math. Soc. 63 (2) ; 368-369. Zbl0355.47038MR55 #8905
  89. SIEGEL J. (1977) : A new proof of Caristi's fixed point theorem. Proc. Amer. Math. Soc. 66 (1) 54-56. Zbl0369.54022MR56 #16606
  90. SMART D.R. (1974) : Fixed point theorems, Cambridge Univ. Press. Zbl0297.47042MR57 #7570
  91. SWAMINATHAN S. (1976) : Fixed point theory and its applications. Academic Press, New-York. Zbl0363.00010MR54 #11112
  92. TALMAN L.A. (1977) : Fixed points of differentiable maps in ordered locally convex spaces. Ph. D. thesis Univ. of Kansas. 
  93. TARTAR L. (1974) : Inequations variationnelles abstraites. C.R. Acad. Sc. Paris, 278, 1193-1196. Zbl0334.49003MR49 #9703
  94. TERKELSEN F. (1974) : A short proof of Fan's fixed point theorem. Proc. Amer. Math. Soc. 42 (1974) 643-644. Zbl0301.47043
  95. VAN DER WALT T. (1967) : Fixed and almost fixed points. Math. Center Tracts, Amsterdam. Zbl0139.40801
  96. VIDOSSICH G. : How to get zeros of nonlinear operators using the theory of ordinary differential equations. Actas Sem. Anal. Func. Sao Paulo (to appear). 
  97. WEINSTEIN A. (1968) : A fixed point theorem for positively curved manifolds. J. Math. Mech. 18 (2), 149-153. Zbl0159.51401MR37 #3478
  98. WEINSTEIN A. (1977) : Lectures an symplectic manifolds. CBMS Regional Conference Univ. North Carolina (lecture n°7). Amer. Math. Soc. Providence, R.I. Zbl0406.53031MR57 #4244
  99. WONG C.S. (1976) : On a fixed point theorem of contractive type. Proc. Amer. Math. Soc. 57 (2), 283-284. Zbl0329.54042MR53 #11596

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.