An explicit construction of the K-finite vectors in the discrete series for an isotropic semisimple symmetric space

Mogens Flensted-Jensen; Kiyosato Okamoto

Mémoires de la Société Mathématique de France (1984)

  • Volume: 15, page 157-199
  • ISSN: 0249-633X

How to cite

top

Flensted-Jensen, Mogens, and Okamoto, Kiyosato. "An explicit construction of the K-finite vectors in the discrete series for an isotropic semisimple symmetric space." Mémoires de la Société Mathématique de France 15 (1984): 157-199. <http://eudml.org/doc/94838>.

@article{Flensted1984,
author = {Flensted-Jensen, Mogens, Okamoto, Kiyosato},
journal = {Mémoires de la Société Mathématique de France},
keywords = {semisimple symmetric space; discrete series; K spectrum},
language = {eng},
pages = {157-199},
publisher = {Société mathématique de France},
title = {An explicit construction of the K-finite vectors in the discrete series for an isotropic semisimple symmetric space},
url = {http://eudml.org/doc/94838},
volume = {15},
year = {1984},
}

TY - JOUR
AU - Flensted-Jensen, Mogens
AU - Okamoto, Kiyosato
TI - An explicit construction of the K-finite vectors in the discrete series for an isotropic semisimple symmetric space
JO - Mémoires de la Société Mathématique de France
PY - 1984
PB - Société mathématique de France
VL - 15
SP - 157
EP - 199
LA - eng
KW - semisimple symmetric space; discrete series; K spectrum
UR - http://eudml.org/doc/94838
ER -

References

top
  1. [1] Berger,M., Les espaces symétriques non compacts. Ann. Sci. École Norm. Sup., 74 (1957), 85-177. Zbl0093.35602MR21 #3516
  2. [2] Faraut, J., Distributions sphériques sur les espaces hyperboliques. J. Math. pures et appl. 58 (1979), 369-444. Zbl0436.43011MR82k:43009
  3. [3] Flensted-Jensen, M., Discrete series for semisimple symmetric spaces. Ann. of Math. 111 (1980), 253-311. Zbl0462.22006MR81h:22015
  4. [4] Flensted-Jensen, M., Harmonic analysis on semisimple symmetric spaces. A method of duality. To appear in the proceedings of the Special Year in Lie Groups. University of Maryland, 1982-1983. (Springer Lecture Notes in Mathematics). 
  5. [5] Harish-ChandraSpherical functions on a semisimple Lie group I and II. Amer. J. Math. 80 (1958), 241-310 and 553-613. Zbl0093.12801MR20 #925
  6. [6] Helgason, S., A duality for symmetric spaces with applications to group representations. Adv. Math. 5 (1970), 1-154. Zbl0209.25403MR41 #8587
  7. [7] Helgason, S., A duality for symmetric spaces with applications to group representations II. Differential equations and eigenspace representations. Adv. Math. 22 (1976), 187-219. Zbl0351.53037MR55 #3169
  8. [8] Helgason, S., Differential geometry, Lie groups and symmetric spaces. Academic Press, New York-San Francisco-London 1978. Zbl0451.53038
  9. [9] Helgason, S., Groups and geometric analysis I. To appear Academic Press. Zbl0543.58001
  10. [10] Kashiwara, M., Kowata, A., Minemura, K., Okamoto, K., Oshima, T. and Tanaka, M., Eigenfunctions of invariant differential operators on a symmetric space. Ann. of Math., 107 (1978), 1-39. Zbl0377.43012MR81f:43013
  11. [11] Kosters, M.T., Spherical distributions on rank one symmetric spaces. Thesis, University of Leiden, 1983. 
  12. [12] Loos, O., Symmetric spaces. I, II. New York-Amsterdam, W.A. Benjamin, Inc., 1969. Zbl0175.48601MR39 #365a
  13. [13] Matsuki, T., The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357. Zbl0396.53025MR81a:53049
  14. [14] Oshima, T. and Matsuki, T., A description of discrete series for semisimple symmetric spaces. Preprint 1983. Zbl0577.22012
  15. [15] Oshima, T. and Sekiguchi, J. : Eigenspaces of invariant differential operators on an affine symmetric space, Inventiones Math. 57 (1980), 1-81. Zbl0434.58020MR81k:43014
  16. [16] Schlichtkrull, H., The Langlands parameters of Flensted-Jensen's discrete series for semisimple symmetrics spaces, J. Func. Anal. 50 (1983), 133-150. Zbl0507.22013MR84h:22030
  17. [17] Schlichtkrull, H., Applications of hyperfunction Theory to representations of semisimple Lie groups. Rapport 2 a-b, Dept. of Math., University of Copenhagen, April 1983. 
  18. [18] Strichartz, R.S., Harmonic analysis on hyperboloids. J. Funct. Anal. 12 (1973), 341-383. Zbl0253.43013MR50 #5370
  19. [19] Takahashi, R., Quelques résultats sur l'Analyse Harmonique dans l'espace symétrique non compact de rang 1 du type exceptionnel. In : Lecture notes in Mathematics vol. 793, 511-567. Springer Verlag, Berlin, 1979. Zbl0447.43008MR81i:22012
  20. [20] Vogan, D., Algebraic structure of irreductible representations of semisimple Lie groups. Ann. of Math. 109 (1979), 1-60. Zbl0424.22010MR81j:22020
  21. [21] Speh, B. and Vogan, D., Reducibility of generalized principal series representations. Acta Math. 145 (1980), 227-299. Zbl0457.22011MR82c:22018
  22. [22] Wolf, J.A., Spaces of constant curvature. McGraw-Hill, New York, 1967. Zbl0162.53304MR36 #829

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.