Théorème d’Atiyah-Bott pour les variétés 𝔭 -adiques et caractères des groupes réductifs

L. Clozel

Mémoires de la Société Mathématique de France (1984)

  • Volume: 15, page 39-64
  • ISSN: 0249-633X

How to cite

top

Clozel, L.. "Théorème d’Atiyah-Bott pour les variétés ${\mathfrak {p}}$-adiques et caractères des groupes réductifs." Mémoires de la Société Mathématique de France 15 (1984): 39-64. <http://eudml.org/doc/94845>.

@article{Clozel1984,
author = {Clozel, L.},
journal = {Mémoires de la Société Mathématique de France},
keywords = {Atiyah-Bott theorem; p-adic manifolds; reductive p-adic groups},
language = {fre},
pages = {39-64},
publisher = {Société mathématique de France},
title = {Théorème d’Atiyah-Bott pour les variétés $\{\mathfrak \{p\}\}$-adiques et caractères des groupes réductifs},
url = {http://eudml.org/doc/94845},
volume = {15},
year = {1984},
}

TY - JOUR
AU - Clozel, L.
TI - Théorème d’Atiyah-Bott pour les variétés ${\mathfrak {p}}$-adiques et caractères des groupes réductifs
JO - Mémoires de la Société Mathématique de France
PY - 1984
PB - Société mathématique de France
VL - 15
SP - 39
EP - 64
LA - fre
KW - Atiyah-Bott theorem; p-adic manifolds; reductive p-adic groups
UR - http://eudml.org/doc/94845
ER -

References

top
  1. [1] M.F. Atiyah, R. Bott, A Lefschetz fixed point formula for elliptic complexes, I, Ann. of Math. 86, 1967, 374-407. Zbl0161.43201MR35 #3701
  2. [2] I.N. Bernstein, A.V. Zelevinskii, Representations of the group GL (n,F) where F is a non-archimedian local field, Russian Math. Surveys 31 (3), 1976, 1-68. Zbl0348.43007MR54 #12988
  3. [3] I.N. Bernstein, A.V. Zelevinskii, Induced representations of reductive p-adic groups I, Ann. Sc. E.N.S., 4e série, 10, 1977, 441-472. Zbl0412.22015MR58 #28310
  4. [4] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint. 
  5. [5] P. Cartier, Representations of p-adic groups, Proc. Symp. Pure Math. 33, 1979, part I, 111-155. Zbl0421.22010MR81e:22029
  6. [6] G. van Dijk, Computation of Certain Induced Characters of p-adic Groups, Math. Ann. 199, 1972, 229-240. Zbl0231.22018MR49 #3043
  7. [7] Harish-Chandra, A submersion principle and its applications, Proc. Indian Acad. Sc. (Math. Sci.) 90 (2), April 1981, 95-102. Zbl0512.22010MR83h:22031
  8. [8] Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, Queen's papers in pure and applied mathematics 48, 1978, 281-347. Zbl0433.22012MR58 #28313
  9. [9] D. Heifetz, p-Adic Oscillatory Integrals and Wave Front Sets, thèse, Columbia University, 1982. 
  10. [10] T. Hirai, The Characters of some induced representations of semisimple Lie groups, J. Math. Kyoto Univ. 8 (3), 1968, 313-363. Zbl0185.21503MR39 #354
  11. [11] V. Guillemin, S. Sternberg, Geometric Asymptotics, Math. Surveys 14, AMS, Providence 1977. Zbl0364.53011MR58 #24404
  12. [12] R.E. Kottwitz, Rational Conjugary classes in Reductive groups, Duke Math. J. 49 (4), 1982, 785-806. Zbl0506.20017MR84k:20020
  13. [13] R.P. Langlands, Base Change for GL (2), Annals of Math. Study 96, 1980. Zbl0444.22007MR82a:10032
  14. [14] J. Repka, Base Change and Induced Representations of Real Reductive groups, preprint. 
  15. [15] F. Rodier, Décomposition spectrale des représentations lisses, in Springer Lecture Notes 587, 1977. Zbl0357.22004MR57 #542
  16. [16] N. Wallach, Harmonic Analysis on homogeneous spaces, Marcel Dekker, 1973. Zbl0265.22022MR58 #16978

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.