Théorème d’Atiyah-Bott pour les variétés -adiques et caractères des groupes réductifs
Mémoires de la Société Mathématique de France (1984)
- Volume: 15, page 39-64
- ISSN: 0249-633X
Access Full Article
topHow to cite
topClozel, L.. "Théorème d’Atiyah-Bott pour les variétés ${\mathfrak {p}}$-adiques et caractères des groupes réductifs." Mémoires de la Société Mathématique de France 15 (1984): 39-64. <http://eudml.org/doc/94845>.
@article{Clozel1984,
author = {Clozel, L.},
journal = {Mémoires de la Société Mathématique de France},
keywords = {Atiyah-Bott theorem; p-adic manifolds; reductive p-adic groups},
language = {fre},
pages = {39-64},
publisher = {Société mathématique de France},
title = {Théorème d’Atiyah-Bott pour les variétés $\{\mathfrak \{p\}\}$-adiques et caractères des groupes réductifs},
url = {http://eudml.org/doc/94845},
volume = {15},
year = {1984},
}
TY - JOUR
AU - Clozel, L.
TI - Théorème d’Atiyah-Bott pour les variétés ${\mathfrak {p}}$-adiques et caractères des groupes réductifs
JO - Mémoires de la Société Mathématique de France
PY - 1984
PB - Société mathématique de France
VL - 15
SP - 39
EP - 64
LA - fre
KW - Atiyah-Bott theorem; p-adic manifolds; reductive p-adic groups
UR - http://eudml.org/doc/94845
ER -
References
top- [1] M.F. Atiyah, R. Bott, A Lefschetz fixed point formula for elliptic complexes, I, Ann. of Math. 86, 1967, 374-407. Zbl0161.43201MR35 #3701
- [2] I.N. Bernstein, A.V. Zelevinskii, Representations of the group GL (n,F) where F is a non-archimedian local field, Russian Math. Surveys 31 (3), 1976, 1-68. Zbl0348.43007MR54 #12988
- [3] I.N. Bernstein, A.V. Zelevinskii, Induced representations of reductive p-adic groups I, Ann. Sc. E.N.S., 4e série, 10, 1977, 441-472. Zbl0412.22015MR58 #28310
- [4] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint.
- [5] P. Cartier, Representations of p-adic groups, Proc. Symp. Pure Math. 33, 1979, part I, 111-155. Zbl0421.22010MR81e:22029
- [6] G. van Dijk, Computation of Certain Induced Characters of p-adic Groups, Math. Ann. 199, 1972, 229-240. Zbl0231.22018MR49 #3043
- [7] Harish-Chandra, A submersion principle and its applications, Proc. Indian Acad. Sc. (Math. Sci.) 90 (2), April 1981, 95-102. Zbl0512.22010MR83h:22031
- [8] Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, Queen's papers in pure and applied mathematics 48, 1978, 281-347. Zbl0433.22012MR58 #28313
- [9] D. Heifetz, p-Adic Oscillatory Integrals and Wave Front Sets, thèse, Columbia University, 1982.
- [10] T. Hirai, The Characters of some induced representations of semisimple Lie groups, J. Math. Kyoto Univ. 8 (3), 1968, 313-363. Zbl0185.21503MR39 #354
- [11] V. Guillemin, S. Sternberg, Geometric Asymptotics, Math. Surveys 14, AMS, Providence 1977. Zbl0364.53011MR58 #24404
- [12] R.E. Kottwitz, Rational Conjugary classes in Reductive groups, Duke Math. J. 49 (4), 1982, 785-806. Zbl0506.20017MR84k:20020
- [13] R.P. Langlands, Base Change for GL (2), Annals of Math. Study 96, 1980. Zbl0444.22007MR82a:10032
- [14] J. Repka, Base Change and Induced Representations of Real Reductive groups, preprint.
- [15] F. Rodier, Décomposition spectrale des représentations lisses, in Springer Lecture Notes 587, 1977. Zbl0357.22004MR57 #542
- [16] N. Wallach, Harmonic Analysis on homogeneous spaces, Marcel Dekker, 1973. Zbl0265.22022MR58 #16978
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.