Groupes nilpotents existentiellement clos de classe fixée

Wilfrid Hodges

Mémoires de la Société Mathématique de France (1984)

  • Volume: 16, page I1-III10
  • ISSN: 0249-633X

How to cite

top

Hodges, Wilfrid. "Groupes nilpotents existentiellement clos de classe fixée." Mémoires de la Société Mathématique de France 16 (1984): I1-III10. <http://eudml.org/doc/94855>.

@article{Hodges1984,
author = {Hodges, Wilfrid},
journal = {Mémoires de la Société Mathématique de France},
keywords = {Mal'tsev correspondence; existentially closed nilpotent groups; first- order sentence; finite forcing},
language = {fre},
pages = {I1-III10},
publisher = {Société mathématique de France},
title = {Groupes nilpotents existentiellement clos de classe fixée},
url = {http://eudml.org/doc/94855},
volume = {16},
year = {1984},
}

TY - JOUR
AU - Hodges, Wilfrid
TI - Groupes nilpotents existentiellement clos de classe fixée
JO - Mémoires de la Société Mathématique de France
PY - 1984
PB - Société mathématique de France
VL - 16
SP - I1
EP - III10
LA - fre
KW - Mal'tsev correspondence; existentially closed nilpotent groups; first- order sentence; finite forcing
UR - http://eudml.org/doc/94855
ER -

References

top
  1. [1] A. B. APPS, On ℵ0-categorical class two groups, J. Algebra 82 (1983) 516-538. Zbl0533.20001MR85d:20031
  2. [2] JON BARWISE & ABRAHAM ROBINSON, Completing theories by forcing, Ann. Math. Logic 2 (1970) 119-142. Zbl0222.02058MR42 #7494
  3. [3] O. B. Белградек (O. V. BELEGRADEK), Элементарные свойства алгебраически ӡамкнутыx групп, Fundamenta Math. 98 (1978) 83-101. Zbl0389.20030
  4. [4] J. L. BELL & M. MACHOVER, A course in mathematical logic, North-Holland, Amsterdam 1977. Zbl0359.02001MR57 #12155
  5. [5] JORAM HIRSCHFELD & WILLIAM H. WHEELER, Forcing, Arithmetic, Division rings, Lecture Notes in Mathematics 454, Springer, Berlin 1975. Zbl0304.02024MR52 #10412
  6. [6] WILFRID HODGES, Interpreting number theory in nilpotent groups, Arch. Math. Logik Grundlag. 20 (1980) 103-111. Zbl0454.03014MR82c:03047
  7. [7] WILFRID HODGES, Building models by games, Cambridge U.P. (à apparaître). Zbl0553.03020
  8. [8] A. I. MAL'CEV, A correspondence between rings and groups, dans The metamathematics of algebraic systems, collected papers, North-Holland, Amsterdam 1971, pp. 124-137. 
  9. [9] BERTHOLD MAIER, On existentially closed and generic nilpotent groups (à paraître). Zbl0539.03015
  10. [10] D. SARACINO, Existentially complete nilpotent groups, Israel J. Math. 25 (1976) 241-248. Zbl0347.02034MR56 #11780
  11. [11] DAN SARACINO & CAROL WOOD, Periodic existentially closed nilpotent groups, J. Algebra 58 (1979) 189-207. Zbl0673.03024MR80m:03071
  12. [12] MARTIN ZIEGLER, Algebraisch abgeschlossene Gruppen, dans Word Problems II, The Oxford Book, ed. S. I. Adian et al., North-Holland, Amsterdam 1980, pp. 449-576. Zbl0451.20001MR82b:20004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.