Systèmes de lois de conservation et stabilité BV

Christophe Cheverry

Mémoires de la Société Mathématique de France (1998)

  • Volume: 75, page 1-106
  • ISSN: 0249-633X

How to cite

top

Cheverry, Christophe. "Systèmes de lois de conservation et stabilité BV." Mémoires de la Société Mathématique de France 75 (1998): 1-106. <http://eudml.org/doc/94926>.

@article{Cheverry1998,
author = {Cheverry, Christophe},
journal = {Mémoires de la Société Mathématique de France},
keywords = {initial values with small total variation; initial values with small amplitude; periodic initial data; compactness properties of the solution operator},
language = {fre},
pages = {1-106},
publisher = {Société mathématique de France},
title = {Systèmes de lois de conservation et stabilité BV},
url = {http://eudml.org/doc/94926},
volume = {75},
year = {1998},
}

TY - JOUR
AU - Cheverry, Christophe
TI - Systèmes de lois de conservation et stabilité BV
JO - Mémoires de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 75
SP - 1
EP - 106
LA - fre
KW - initial values with small total variation; initial values with small amplitude; periodic initial data; compactness properties of the solution operator
UR - http://eudml.org/doc/94926
ER -

References

top
  1. [B1] A. BRESSAN, Lectures notes on systems of conservation laws, S.I.S.S.A, Trieste, 1996. 
  2. [B2] A. BRESSAN, The Semigroup Approach to Systems of conservation laws, S.I.S.S.A, Via Beirut 4, Trieste, 135/95/M. 1994. 
  3. [CCS] K. CHUEH, C. CONLEY, J. SMOLLER, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Math., 26 (1977), 373-392. Zbl0368.35040MR55 #3541
  4. [Ch1] C. CHEVERRY, Justification de l'optique géométrique nonlinéaire pour un système de lois de conservation, Duke Mathematical Journal, 87, (1997), 213-263. Zbl0914.35078MR98c:35106
  5. [Ch2] C. CHEVERRY, The modulation equations of non linear geometric optics, Comm. in Part. Diff. Eq, 21 (1996), 1119-1140. Zbl0867.35061MR97e:35104
  6. [Ch3] C. CHEVERRY, About the Cauchy problem for a system of conservation laws, Geometrical optics and related topics. Progress in non linear differential equations and their applications. Birhäuser. To appear. Zbl0897.35049
  7. [Ch4] C. CHEVERRY, Optique géométrique oscillante en présence d'un grand choc, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. À paraître. Zbl0957.35087
  8. [G] J. GLIMM, Solutions in the large for non linear hyperbolic systems, Commun. Pure. Applied. Math., 28 (1970), 697-715 Zbl0141.28902
  9. [GL] J. GLIMM, P. LAX, Decay of solutions of systems of nonlinear hyperbolic conservation laws, Memoirs Amer. Math. Soc., 101 (1970). Zbl0204.11304MR42 #676
  10. [H] J. HUNTER, Hyperbolic waves and nonlinear geometric acoustics, Transactions of the Sixth Army Conference on Applied Mathematics and Computing, 2 (1989), 527-569. Zbl0668.76075MR1000794
  11. [J] F. JOHN, Formation of Singularities in One-Dimensional Nonlinear Wave Propagation, Commun. Pure. Applied. Math., 27 (1974), 377-405. Zbl0302.35064MR51 #6163
  12. [JMR1] J.-L. JOLY, G. MÉTIVIER, J. RAUCH, Resonant one dimensional nonlinear geometric optics, J. Funct. Anal., 114 (1993), 106-231. Zbl0851.35023MR94i:35118
  13. [JMR2] J.-L. JOLY, G. MÉTIVIER, J. RAUCH, A non linear instability for 3 × 3 systems of conservation laws, Comm. Math. Phys., 162 (1994), 47-59. Zbl0820.35093MR95f:35145
  14. [La] P. LAX, Hyperbolic systems of conservation laws II, Comm. Pure. Appl. Math., 10 (1957), 537-566. Zbl0081.08803MR20 #176
  15. [RY1] R. YOUNG, Sup-norm Stability for Glimm's Scheme, Comm. Pure. Appl. Math., 46 (1993), 903-948. Zbl0792.35120MR94e:65100
  16. [RY2] B. TEMPLE, R. YOUNG, The large time stability of sound waves, Commun. Math. Phys., 179 (1996), 417-466. Zbl0858.76075MR97f:35132
  17. [Sc1] S. SCHOCHET, Glimm's scheme for systems with almost-planar interactions, Comm. in Part. Diff. Eq., 16 (1991), 1423-1440. Zbl0746.35022MR93a:35106
  18. [Sc2] S. SCHOCHET, The essence of Glimm's scheme, Preprint. Zbl0882.35009
  19. [Sc3] S. SCHOCHET, Resonant nonlinear geometrical optics for weak solutions of conservation laws, J. Diff. Eq., 113 (1994), 473-504. Zbl0856.35080MR96c:35112
  20. [Se] D. SERRE, Domaines invariants pour les systèmes hyperboliques de lois de conservation, J. Diff. Eq., 69 (1987), 46-62. Zbl0626.35061MR88k:35126
  21. [TPL] TAI-PING-LIU, Decay to N-waves of solutions of general systems of nonlinear hyperbolic conservation laws, Comm. in Part. Diff. Eq., 30 (1977), 585-610. Zbl0357.35059MR56 #9095
  22. [W] B. WENDROFF, An analysis of front tracking for chromatography, Acta. Appl. Math., 30 (1993), 265-285. Zbl0789.35106MR93m:65175

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.