The convex and concave decomposition of manifolds with real projective structures

Suhyoung Choi

Mémoires de la Société Mathématique de France (1999)

  • Volume: 78, page 1-102
  • ISSN: 0249-633X

How to cite

top

Choi, Suhyoung. "The convex and concave decomposition of manifolds with real projective structures." Mémoires de la Société Mathématique de France 78 (1999): 1-102. <http://eudml.org/doc/94929>.

@article{Choi1999,
author = {Choi, Suhyoung},
journal = {Mémoires de la Société Mathématique de France},
keywords = {geometric structures; projective geometry; convexity},
language = {eng},
pages = {1-102},
publisher = {Société mathématique de France},
title = {The convex and concave decomposition of manifolds with real projective structures},
url = {http://eudml.org/doc/94929},
volume = {78},
year = {1999},
}

TY - JOUR
AU - Choi, Suhyoung
TI - The convex and concave decomposition of manifolds with real projective structures
JO - Mémoires de la Société Mathématique de France
PY - 1999
PB - Société mathématique de France
VL - 78
SP - 1
EP - 102
LA - eng
KW - geometric structures; projective geometry; convexity
UR - http://eudml.org/doc/94929
ER -

References

top
  1. [1] B. APANASOV ET AL. (ed.)Geometry, Topology, and Physics, W. de Gruyter, Berlin, New York, 1997. 
  2. [2] T. BARBOT — On certain radiant affine manifolds, preprint, 1997. 
  3. [3] T. BARBOT, Structures affines radiales sur les variétés de Seifert, preprint, 1997. 
  4. [4] T. BARBOT, Variétés affines radiales de dimension trois, preprint, 1997. 
  5. [5] Y. BENOIST — Nilvariétés projectives, Comment. Math. Helv. 69 (1994), p. 447-473. Zbl0839.53033MR95m:57054
  6. [6] J.-P. BENZÉCRI — Variétés localement affines et projectives, Bull. Soc. Math. France 88 (1960), p. 229-332. Zbl0098.35204MR23 #A1325
  7. [7] M. BERGER — Geometry I, Springer-Verlag, New York, 1987. Zbl0606.51001
  8. [8] Y. CARRIÈRE — Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math. 95 (1989), p. 615-628. Zbl0682.53051MR89m:53116
  9. [9] Y. CARRIÈRE, Questions ouvertes sur les variétés affines, Séminaire Gaston Darboux de Géométrie et Topologie Différentielle (Montpellier) 1991-1992, (Univ. Montpellier II. Montpellier), 1993, p. 69-72. Zbl0767.53007MR94e:57039
  10. [10] S. CHOI — Convex decompositions of real projective surfaces. I: π-annuli and convexity, J. Differential Geom. 40 (1994), p. 165-208. Zbl0818.53042MR95i:57015
  11. [11] S. CHOI, Convex decompositions of real projective surfaces. II: admissible decompositions, J. Differential Geom. 40 (1994), p. 239-283. Zbl0822.53009MR95i:57015
  12. [12] S. CHOI, i-convexity of manifolds with real projective structures, Proc. Amer. Math. Soc. 122 (1994), p. 545-548. Zbl0811.53025MR95a:57018
  13. [13] S. CHOI, Convex decompositions of real projective surfaces. III : for closed and nonorientable surfaces, J. Korean Math. Soc. 33 (1996), p. 1138-1171. Zbl0958.53022MR98a:57016
  14. [14] S. CHOI, The decomposition and classification of radiant affine 3-manifold, GARC preprint 97-74, dg-ga/9712006, 1997. 
  15. [15] S. CHOI, The universal cover of an affine three-manifold with holonomy of discompactedness two, in Apanasov et al. [1], p. 107-118. Zbl0917.53008MR99f:57016
  16. [16] S. CHOI, The universal cover of an affine three-manifold with holonomy of infinitely shrinkable dimension ≤ 2, submitted, dg-ga/9706011, 1997. 
  17. [17] S. CHOI ϑ W. M. GOLDMAN — The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc. 34 (1997), p. 161-171. Zbl0866.57001MR97m:57020
  18. [18] S. CHOI, H. KIM — H. LEE (eds.) — Proceedings of the conference on geometric structures on manifolds, in preparation. Zbl0927.00035
  19. [19] S. DUPONT — Solvariétés projectives de dimension 3, Ph. D. Thesis, Université Paris 7, 1998. 
  20. [20] H. EGGLESTON — Convexity, Cambridge University Press, 1977. 
  21. [21] W. GOLDMAN — Projective structures with Fuchsian holonomy, J. Differential Geom. 25 (1987), p. 297-326. Zbl0595.57012MR88i:57006
  22. [22] W. GOLDMAN, — Convex real projective structures on surfaces, J. Differential Geom. 31 (1990), p. 791-845. Zbl0711.53033MR91b:57001
  23. [23] H. KIM — Geometry of left-symmetric algebra, J. Korean Math. Soc. 33 (1996), p. 1047-1067. Zbl0877.53036MR97k:53050
  24. [24] S. KOBAYASHI — Projectively invariant distances for affine and projective structures, Differential Geometry, Banach Center Publication, vol. 12, Polish Scientific Publishers, Warsaw, 1984, p. 127-152. Zbl0558.53019MR89k:53043
  25. [25] N. H. KUIPER — On compact conformally euclidean spaces of dimension &gt; 2, Ann. Math. 52 (1950), p. 487-490. Zbl0039.17701MR12,283c
  26. [26] E. MOLNÁR — The projective interpretation of the eight 3-dimensional homogeneous geometries, Beiträge zur Algebra und Geometrie 38 (1997), p. 262-288. Zbl0889.51021MR98m:57018
  27. [27] T. NAGANO ϑ K. YAGI — The affine structures on the real two torus. I, Osaka J. Math. 11 (1974), p. 181-210. Zbl0285.53030MR51 #14086
  28. [28] J. RATCLIFF — Foundations of hyperbolic manifolds, GTM 149, Springer, New York, 1994. Zbl0809.51001MR95j:57011
  29. [29] P. SCOTT — The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), p. 401-487. Zbl0561.57001MR84m:57009
  30. [30] E. SUAREZ — Poliedros de Dirichlet de 3-variedades conicas y sus deformaciones, Ph. D. Thesis, Univ. Madrid, 1998. 
  31. [31] D. SULLIVAN ϑ W. THURSTON — Manifolds with canonical coordinate charts: Some examples, Enseign. Math 29 (1983), p. 15-25. Zbl0529.53025MR84i:53035
  32. [32] B. THIEL — Einheitliche Beschreibung der acht Thurstonschen Geometrien, Diplomarbeit, Universität zu Göttingen, 1997. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.