The convex and concave decomposition of manifolds with real projective structures
Mémoires de la Société Mathématique de France (1999)
- Volume: 78, page 1-102
- ISSN: 0249-633X
Access Full Article
topHow to cite
topChoi, Suhyoung. "The convex and concave decomposition of manifolds with real projective structures." Mémoires de la Société Mathématique de France 78 (1999): 1-102. <http://eudml.org/doc/94929>.
@article{Choi1999,
author = {Choi, Suhyoung},
journal = {Mémoires de la Société Mathématique de France},
keywords = {geometric structures; projective geometry; convexity},
language = {eng},
pages = {1-102},
publisher = {Société mathématique de France},
title = {The convex and concave decomposition of manifolds with real projective structures},
url = {http://eudml.org/doc/94929},
volume = {78},
year = {1999},
}
TY - JOUR
AU - Choi, Suhyoung
TI - The convex and concave decomposition of manifolds with real projective structures
JO - Mémoires de la Société Mathématique de France
PY - 1999
PB - Société mathématique de France
VL - 78
SP - 1
EP - 102
LA - eng
KW - geometric structures; projective geometry; convexity
UR - http://eudml.org/doc/94929
ER -
References
top- [1] B. APANASOV ET AL. (ed.)Geometry, Topology, and Physics, W. de Gruyter, Berlin, New York, 1997.
- [2] T. BARBOT — On certain radiant affine manifolds, preprint, 1997.
- [3] T. BARBOT, Structures affines radiales sur les variétés de Seifert, preprint, 1997.
- [4] T. BARBOT, Variétés affines radiales de dimension trois, preprint, 1997.
- [5] Y. BENOIST — Nilvariétés projectives, Comment. Math. Helv. 69 (1994), p. 447-473. Zbl0839.53033MR95m:57054
- [6] J.-P. BENZÉCRI — Variétés localement affines et projectives, Bull. Soc. Math. France 88 (1960), p. 229-332. Zbl0098.35204MR23 #A1325
- [7] M. BERGER — Geometry I, Springer-Verlag, New York, 1987. Zbl0606.51001
- [8] Y. CARRIÈRE — Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math. 95 (1989), p. 615-628. Zbl0682.53051MR89m:53116
- [9] Y. CARRIÈRE, Questions ouvertes sur les variétés affines, Séminaire Gaston Darboux de Géométrie et Topologie Différentielle (Montpellier) 1991-1992, (Univ. Montpellier II. Montpellier), 1993, p. 69-72. Zbl0767.53007MR94e:57039
- [10] S. CHOI — Convex decompositions of real projective surfaces. I: π-annuli and convexity, J. Differential Geom. 40 (1994), p. 165-208. Zbl0818.53042MR95i:57015
- [11] S. CHOI, Convex decompositions of real projective surfaces. II: admissible decompositions, J. Differential Geom. 40 (1994), p. 239-283. Zbl0822.53009MR95i:57015
- [12] S. CHOI, i-convexity of manifolds with real projective structures, Proc. Amer. Math. Soc. 122 (1994), p. 545-548. Zbl0811.53025MR95a:57018
- [13] S. CHOI, Convex decompositions of real projective surfaces. III : for closed and nonorientable surfaces, J. Korean Math. Soc. 33 (1996), p. 1138-1171. Zbl0958.53022MR98a:57016
- [14] S. CHOI, The decomposition and classification of radiant affine 3-manifold, GARC preprint 97-74, dg-ga/9712006, 1997.
- [15] S. CHOI, The universal cover of an affine three-manifold with holonomy of discompactedness two, in Apanasov et al. [1], p. 107-118. Zbl0917.53008MR99f:57016
- [16] S. CHOI, The universal cover of an affine three-manifold with holonomy of infinitely shrinkable dimension ≤ 2, submitted, dg-ga/9706011, 1997.
- [17] S. CHOI ϑ W. M. GOLDMAN — The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc. 34 (1997), p. 161-171. Zbl0866.57001MR97m:57020
- [18] S. CHOI, H. KIM — H. LEE (eds.) — Proceedings of the conference on geometric structures on manifolds, in preparation. Zbl0927.00035
- [19] S. DUPONT — Solvariétés projectives de dimension 3, Ph. D. Thesis, Université Paris 7, 1998.
- [20] H. EGGLESTON — Convexity, Cambridge University Press, 1977.
- [21] W. GOLDMAN — Projective structures with Fuchsian holonomy, J. Differential Geom. 25 (1987), p. 297-326. Zbl0595.57012MR88i:57006
- [22] W. GOLDMAN, — Convex real projective structures on surfaces, J. Differential Geom. 31 (1990), p. 791-845. Zbl0711.53033MR91b:57001
- [23] H. KIM — Geometry of left-symmetric algebra, J. Korean Math. Soc. 33 (1996), p. 1047-1067. Zbl0877.53036MR97k:53050
- [24] S. KOBAYASHI — Projectively invariant distances for affine and projective structures, Differential Geometry, Banach Center Publication, vol. 12, Polish Scientific Publishers, Warsaw, 1984, p. 127-152. Zbl0558.53019MR89k:53043
- [25] N. H. KUIPER — On compact conformally euclidean spaces of dimension > 2, Ann. Math. 52 (1950), p. 487-490. Zbl0039.17701MR12,283c
- [26] E. MOLNÁR — The projective interpretation of the eight 3-dimensional homogeneous geometries, Beiträge zur Algebra und Geometrie 38 (1997), p. 262-288. Zbl0889.51021MR98m:57018
- [27] T. NAGANO ϑ K. YAGI — The affine structures on the real two torus. I, Osaka J. Math. 11 (1974), p. 181-210. Zbl0285.53030MR51 #14086
- [28] J. RATCLIFF — Foundations of hyperbolic manifolds, GTM 149, Springer, New York, 1994. Zbl0809.51001MR95j:57011
- [29] P. SCOTT — The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), p. 401-487. Zbl0561.57001MR84m:57009
- [30] E. SUAREZ — Poliedros de Dirichlet de 3-variedades conicas y sus deformaciones, Ph. D. Thesis, Univ. Madrid, 1998.
- [31] D. SULLIVAN ϑ W. THURSTON — Manifolds with canonical coordinate charts: Some examples, Enseign. Math 29 (1983), p. 15-25. Zbl0529.53025MR84i:53035
- [32] B. THIEL — Einheitliche Beschreibung der acht Thurstonschen Geometrien, Diplomarbeit, Universität zu Göttingen, 1997.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.