Extremal domains for the first eigenvalue of the Laplace-Beltrami operator
Frank Pacard[1]; Pieralberto Sicbaldi[2]
- [1] Université Paris Est UFR des Sciences et Technologie Bâtiment P3 - 4e étage 61, avenue du Général de Gaulle 94010 Créteil Cedex (France)
- [2] Université Paris 12 UFR des Sciences et Technologie Bâtiment P3 - 4e étage 61, avenue du Général de Gaulle 94010 Créteil Cedex (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 2, page 515-542
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPacard, Frank, and Sicbaldi, Pieralberto. "Extremal domains for the first eigenvalue of the Laplace-Beltrami operator." Annales de l’institut Fourier 59.2 (2009): 515-542. <http://eudml.org/doc/10402>.
@article{Pacard2009,
abstract = {We prove the existence of extremal domains with small prescribed volume for the first eigenvalue of Laplace-Beltrami operator in some Riemannian manifold. These domains are close to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar curvature.},
affiliation = {Université Paris Est UFR des Sciences et Technologie Bâtiment P3 - 4e étage 61, avenue du Général de Gaulle 94010 Créteil Cedex (France); Université Paris 12 UFR des Sciences et Technologie Bâtiment P3 - 4e étage 61, avenue du Général de Gaulle 94010 Créteil Cedex (France)},
author = {Pacard, Frank, Sicbaldi, Pieralberto},
journal = {Annales de l’institut Fourier},
keywords = {Extremal domain; Laplace-Beltrami operator; first eigenvalue; scalar curvature; geodesic sphere; extremal domain},
language = {eng},
number = {2},
pages = {515-542},
publisher = {Association des Annales de l’institut Fourier},
title = {Extremal domains for the first eigenvalue of the Laplace-Beltrami operator},
url = {http://eudml.org/doc/10402},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Pacard, Frank
AU - Sicbaldi, Pieralberto
TI - Extremal domains for the first eigenvalue of the Laplace-Beltrami operator
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 2
SP - 515
EP - 542
AB - We prove the existence of extremal domains with small prescribed volume for the first eigenvalue of Laplace-Beltrami operator in some Riemannian manifold. These domains are close to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar curvature.
LA - eng
KW - Extremal domain; Laplace-Beltrami operator; first eigenvalue; scalar curvature; geodesic sphere; extremal domain
UR - http://eudml.org/doc/10402
ER -
References
top- O. Druet, Sharp local isoperimetric inequalities involving the scalar curvature, Proc. Amer. Math. Soc. 130 (2002), 2351-2361 Zbl1067.53026MR1897460
- A. El Soufi, S. Ilias, Domain deformations and eigenvalues of the Dirichlet Laplacian in Riemannian manifold, Illinois Journal of Mathematics 51 (2007), 645-666 Zbl1124.49035MR2342681
- G. Faber, Beweis dass unter allen homogenen Menbranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundtonggibt, Sitzungsber. Bayer. Akad. der Wiss. Math.-Phys. (1923), 169-172 Zbl49.0342.03
- P. R. Garadedian, M. Schiffer, Variational problems in the theory of elliptic partial differetial equations, Journal of Rational Mechanics and Analysis (1953), 137-171 Zbl0050.10002MR54819
- E. Krahn, Uber eine von Raleigh formulierte Minimaleigenschaft der Kreise, 94 (1924), Math. Ann.
- E. Krahn, Uber Minimaleigenschaften der Kugel in drei und mehr dimensionen, A9 (1926), Acta Comm. Univ. Tartu (Dorpat) Zbl52.0510.03
- J. M. Lee, T. H. Parker, The Yamabe Problem, Bulletin of the American Mathematical Society 17 (1987), 37-91 Zbl0633.53062MR888880
- S. Nardulli, Le profil isopérimétrique d’une variété riemannienne compacte pour les petits volumes, Thèse de l’Université Paris 11 (2006)
- F. Pacard, X. Xu, Constant mean curvature sphere in riemannian manifolds Zbl1165.53038
- R. Schoen, S. T. Yau, Lectures on Differential Geometry, (1994), International Press Zbl0830.53001MR1333601
- T. J. Willmore, Riemannian Geometry, (1996), Oxford Science Publications Zbl0797.53002MR1261641
- R. Ye, Foliation by constant mean curvature spheres, Pacific Journal of Mathematics 147 (1991), 381-396 Zbl0722.53022MR1084717
- D. Z. Zanger, Eigenvalue variation for the Neumann problem, Applied Mathematics Letters 14 (2001), 39-43 Zbl0977.58028MR1793700
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.