Manifolds of nonpositive curvature and their buildings
Publications Mathématiques de l'IHÉS (1987)
- Volume: 65, page 35-59
- ISSN: 0073-8301
Access Full Article
topHow to cite
topBurns, Keith, and Spatzier, Ralf. "Manifolds of nonpositive curvature and their buildings." Publications Mathématiques de l'IHÉS 65 (1987): 35-59. <http://eudml.org/doc/104020>.
@article{Burns1987,
author = {Burns, Keith, Spatzier, Ralf},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {nonpositive sectional curvature; finite volume; noncompact type; Tits buildings; symmetric space},
language = {eng},
pages = {35-59},
publisher = {Institut des Hautes Études Scientifiques},
title = {Manifolds of nonpositive curvature and their buildings},
url = {http://eudml.org/doc/104020},
volume = {65},
year = {1987},
}
TY - JOUR
AU - Burns, Keith
AU - Spatzier, Ralf
TI - Manifolds of nonpositive curvature and their buildings
JO - Publications Mathématiques de l'IHÉS
PY - 1987
PB - Institut des Hautes Études Scientifiques
VL - 65
SP - 35
EP - 59
LA - eng
KW - nonpositive sectional curvature; finite volume; noncompact type; Tits buildings; symmetric space
UR - http://eudml.org/doc/104020
ER -
References
top- [B] W. BALLMANN, Nonpositively curved manifolds of higher rank, Ann. of Math., 122 (1985), 597-609. Zbl0585.53031MR87e:53059
- [BBE] W. BALLMANN, M. BRIN and P. EBERLEIN, Structure of manifolds of non-positive curvature. I, Ann. of Math. 122 (1985), 171-203. Zbl0589.53047MR87c:58092a
- [BBS] W. BALLMANN, M. BRIN and R. SPATZIER, Structure of manifolds of non-positive curvature. II, Ann. of Math., 122 (1985), 205-235. Zbl0598.53046MR87c:58092b
- [Be] M. BERGER, Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France, 83 (1955), 279-330. Zbl0068.36002MR18,149a
- [BGS] W. BALLMANN, M. GROMOV and V. SCHROEDER, Manifolds of Nonpositive Curvature, Birkhäuser, Progress in Mathematics, 61 (1985). Zbl0591.53001MR87h:53050
- [BS] K. BURNS and R. SPATZIER, On topological Tits buildings and their classification, Publ. Math. I.H.E.S., 65 (1987), 5-34. Zbl0643.53036MR88g:53049
- [Bou] N. BOURBAKI, Groupes et Algèbres de Lie, chap. IV, V, VI, Eléments de Mathématique, fasc. XXXIV, Paris, Hermann (1968).
- [E1] P. EBERLEIN, Rigidity problems of manifolds of nonpositive curvature, Preprint (1985).
- [E2] P. EBERLEIN, Isometry groups of simply connected manifolds of nonpositive curvature. II, Acta Mathematica, 149 (1982), 41-69. Zbl0511.53048MR83m:53055
- [EO] P. EBERLEIN and B. O'NEILL, Visibility manifolds, Pacific J. Math., 46 (1973), 45-109. Zbl0264.53026MR49 #1421
- [KN] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry, vol. I, New York, Wiley (1963). Zbl0119.37502MR27 #2945
- [M] G. D. MOSTOW, Strong Rigidity of Locally Symmetric Spaces, Annals of Math. Studies, No. 78, Princeton, New Jersey, Princeton University Press (1973). Zbl0265.53039MR52 #5874
- [Ma] G. A. MARGULIS, Discrete Groups of Motions of Manifolds of Nonpositive Curvature, A.M.S. Translations, 109 (1977), 33-45. Zbl0367.57012
- [S] R. J. SPATZIER, The geodesic flow and an approach to the classification of manifolds of nonpositive curvature, M.S.R.I. Berkeley Preprint 004-84 (1984).
- [Si] J. SIMONS, On transitivity of holonomy systems, Ann. of Math., 76 (1962), 213-234. Zbl0106.15201MR26 #5520
- [Sp] E. H. SPANIER, Algebraic Topology, McGraw-Hill (1966). Zbl0145.43303MR35 #1007
- [T] J. TITS, Buildings of Spherical Type and Finite BN-pairs, Springer Lecture Notes in Mathematics, 386 (1970). Zbl0295.20047MR57 #9866
Citations in EuDML Documents
top- Sylvain Barré, Polyèdres finis de dimension 2 à courbure et de rang 2
- Werner Ballmann, On the Dirichlet problem at infinity for manifolds of non-positive curvature (résumé)
- Keith Burns, Ralf Spatzier, On topological Tits buildings and their classification
- Patrick Eberlein, Jens Heber, A differential geometric characterization of symmetric spaces of higher rank
- Sylvain Barré, Sur les polyèdres de rang 2
- Werner Ballmann, Michael Brin, Orbihedra of nonpositive curvature
- Pierre Pansu, Le flot géodésique des variétés riemanniennes à courbure négative
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.