A differential geometric characterization of symmetric spaces of higher rank

Patrick Eberlein; Jens Heber

Publications Mathématiques de l'IHÉS (1990)

  • Volume: 71, page 33-44
  • ISSN: 0073-8301

How to cite

top

Eberlein, Patrick, and Jens Heber. "A differential geometric characterization of symmetric spaces of higher rank." Publications Mathématiques de l'IHÉS 71 (1990): 33-44. <http://eudml.org/doc/104066>.

@article{Eberlein1990,
author = {Eberlein, Patrick, Jens Heber},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {rank rigidity theorem; Hadamard manifold; isometry group; duality condition; Tits distance},
language = {eng},
pages = {33-44},
publisher = {Institut des Hautes Études Scientifiques},
title = {A differential geometric characterization of symmetric spaces of higher rank},
url = {http://eudml.org/doc/104066},
volume = {71},
year = {1990},
}

TY - JOUR
AU - Eberlein, Patrick
AU - Jens Heber
TI - A differential geometric characterization of symmetric spaces of higher rank
JO - Publications Mathématiques de l'IHÉS
PY - 1990
PB - Institut des Hautes Études Scientifiques
VL - 71
SP - 33
EP - 44
LA - eng
KW - rank rigidity theorem; Hadamard manifold; isometry group; duality condition; Tits distance
UR - http://eudml.org/doc/104066
ER -

References

top
  1. [Ba1] W. BALLMANN, Axial isometries of manifolds of nonpositive curvature, Math. Ann., 259 (1982), 131-144. Zbl0487.53039MR83i:53068
  2. [Ba2] W. BALLMANN, Nonpositively curved manifolds of higher rank, Annals of Math., 122 (1985), 597-609. Zbl0585.53031MR87e:53059
  3. [BBE] W. BALLMANN, M. BRIN and P. EBERLEIN, Structure of manifolds of nonpositive curvature, I, Annals of Math., 122 (1985), 171-203. Zbl0589.53047MR87c:58092a
  4. [BBS] W. BALLMANN, M. BRIN and R. SPATZIER, Structure of manifolds of nonpositive curvature, II, Annals of Math., 122 (1985), 205-235. Zbl0598.53046MR87c:58092b
  5. [Be] M. BERGER, Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France, 83 (1953), 279-330. Zbl0068.36002MR18,149a
  6. [BGS] W. BALLMANN, M. GROMOV and V. SCHROEDER, Manifolds of nonpositive curvature, Basel, Birkhäuser, 1985. Zbl0591.53001MR87h:53050
  7. [BO] R. BISHOP and O'NEILL, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49. Zbl0191.52002MR40 #4891
  8. [BS] K. BURNS and R. SPATZIER, Manifolds of nonpositive curvature and their buildings, Publ. Math. IHES, 65 (1987), 35-59. Zbl0643.53037MR88g:53050
  9. [E1] P. EBERLEIN, A differential geometric characterization of symmetric spaces of noncompact type and rank at least two, preprint, 1987. 
  10. [E2] P. EBERLEIN, Geodesic flows on negatively curved manifolds, I, Annals of Math., 95 (1972), 492-510. Zbl0217.47304MR46 #10024
  11. [E3] P. EBERLEIN, Isometry groups of simply connected manifolds of nonpositive curvature, II, Acta Math., 149 (1982), 41-69. Zbl0511.53048MR83m:53055
  12. [E4] P. EBERLEIN, Rigidity of lattices of nonpositive curvature, Erg. Th. Dynam. Sys., 3 (1983), 47-85. Zbl0521.53045MR86f:53049
  13. [E5] P. EBERLEIN, Symmetry diffeomorphism group of a manifold of nonpositive curvature, II, Indiana Univ. Math. Jour., 37 (1988), 735-752. Zbl0676.53054MR90e:53050
  14. [EO] P. EBERLEIN and B. O'NEILL, Visibility manifolds, Pacific J. Math., 46 (1973), 45-109. Zbl0264.53026MR49 #1421
  15. [GKM] D. GROMOLL, W. KLINGENBERG and W. MEYER, Riemannsche Geometrie im Grossen, Lecture Notes in Math., vol. 55, Berlin, Springer, 1968. Zbl0155.30701MR37 #4751

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.