Existence de l-formes fermées non singulières dans une classe de cohomologie de de Rham

François Latour

Publications Mathématiques de l'IHÉS (1994)

  • Volume: 80, page 135-194
  • ISSN: 0073-8301

How to cite

top

Latour, François. "Existence de l-formes fermées non singulières dans une classe de cohomologie de de Rham." Publications Mathématiques de l'IHÉS 80 (1994): 135-194. <http://eudml.org/doc/104099>.

@article{Latour1994,
author = {Latour, François},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Morse forms; nonsingular forms; cobordism; Novikov homology},
language = {fre},
pages = {135-194},
publisher = {Institut des Hautes Études Scientifiques},
title = {Existence de l-formes fermées non singulières dans une classe de cohomologie de de Rham},
url = {http://eudml.org/doc/104099},
volume = {80},
year = {1994},
}

TY - JOUR
AU - Latour, François
TI - Existence de l-formes fermées non singulières dans une classe de cohomologie de de Rham
JO - Publications Mathématiques de l'IHÉS
PY - 1994
PB - Institut des Hautes Études Scientifiques
VL - 80
SP - 135
EP - 194
LA - fre
KW - Morse forms; nonsingular forms; cobordism; Novikov homology
UR - http://eudml.org/doc/104099
ER -

References

top
  1. [1] W. BROWDER et J. LEVINE, Fibering manifolds over a circle, Comment. Math. Helv., 40 (1966), 153-160. Zbl0134.42802MR33 #3309
  2. [2] J. CERF et A. GRAMAIN, Le théorème du h-cobordisme (Smale), Ecole Normale Supérieure Ulm, 1968. 
  3. [3] F. T. FARRELL, The obstruction to fibering a manifold over the circle, Bull. Amer. Math. Soc., 73 (1967), 737-740. Zbl0161.20401MR35 #6151
  4. [4] F. T. FARRELL, The obstruction to fibering a manifold over the circle, Indiana Univ. Math. J., 21 (1971-1972), 315-346. Zbl0242.57016MR44 #7578
  5. [5] A. FLOER, An instanton invariant for 3-manifolds, Commun. Math. Phys., 118 (1988), 215-240. Zbl0684.53027MR89k:57028
  6. [6] S. MAUMARY, Type simple d'homotopie dans Torsion et type simple d'homotopie, Springer L.N.M., 48 (1967), 37-64. MR36 #5943
  7. [7] J. MILNOR, Lectures on the h-cobordism theorem, Princeton Univ. Press, 1965. Zbl0161.20302MR32 #8352
  8. [8] J. MILNOR, Whitehead torsion, Bull. Amer. Math. Soc., 72 (1966), 358-426. Zbl0147.23104MR33 #4922
  9. [9] S. P. NOVIKOV, Multivalued functions and functionals. An analogue of the Morse theory, Soviet Math. Dokl., 24 (1981), 222-226. Zbl0505.58011
  10. [10] S. P. NOVIKOV, The Hamiltonian formalism and a multi-valued analogue of Morse theory, Russian Math. Surveys, 37 (1982), 1-56. Zbl0571.58011MR84h:58032
  11. [11] A. V. PAZHTNOV, On the sharpness of Novikov type inequalities for manifolds with free abelian fundamental group, Math USSR Sbornik, 68 (1991), 351-389. Zbl0708.57013
  12. [12] A. V. PAZHTNOV, Surgery on the Novikov complex, Université de Nantes, Rapport de Recherche 93/01-2. 
  13. [13] L. SIEBENMANN, A total Whitehead obstruction to fibering over the circle, Comment. Math. Helv., 45 (1970), 1-48. Zbl0215.24603MR44 #4768
  14. [14] J. C. SIKORAV, Homologie de Novikov associée à une classe de cohomologie réelle de degré un, Thèse, Orsay, 1987. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.