On the structure of the normal subgroups of a group : supersolubility

James C. Beidleman; Derek J. S. Robinson

Rendiconti del Seminario Matematico della Università di Padova (1992)

  • Volume: 87, page 139-149
  • ISSN: 0041-8994

How to cite

top

Beidleman, James C., and Robinson, Derek J. S.. "On the structure of the normal subgroups of a group : supersolubility." Rendiconti del Seminario Matematico della Università di Padova 87 (1992): 139-149. <http://eudml.org/doc/108246>.

@article{Beidleman1992,
author = {Beidleman, James C., Robinson, Derek J. S.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {generalized Frattini subgroup; non-supersoluble normal subgroup; polycyclic-by-finite groups; Fitting subgroup; non-nilpotent normal subgroup; maximal subgroups of finite index; supersolubility; nilpotency; finitely presented group},
language = {eng},
pages = {139-149},
publisher = {Seminario Matematico of the University of Padua},
title = {On the structure of the normal subgroups of a group : supersolubility},
url = {http://eudml.org/doc/108246},
volume = {87},
year = {1992},
}

TY - JOUR
AU - Beidleman, James C.
AU - Robinson, Derek J. S.
TI - On the structure of the normal subgroups of a group : supersolubility
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1992
PB - Seminario Matematico of the University of Padua
VL - 87
SP - 139
EP - 149
LA - eng
KW - generalized Frattini subgroup; non-supersoluble normal subgroup; polycyclic-by-finite groups; Fitting subgroup; non-nilpotent normal subgroup; maximal subgroups of finite index; supersolubility; nilpotency; finitely presented group
UR - http://eudml.org/doc/108246
ER -

References

top
  1. [1] R. Baer, Überauflösbare Gruppen, Abh. Math. Sem. Univ. Hamburg, 23 (1957), pp. 11-28. Zbl0092.02004MR103925
  2. [2] G. Baumslag, Automorphism groups of residually finite groups, J. London Math. Soc., 38 (1963), pp. 117-118. Zbl0124.26003MR146271
  3. [3] J.C. Beidleman - D. J. S. ROBINSON, On the structure of the normal subgroups of a group: nilpotency, Forum Math., 3 (1991), pp. 581-593. Zbl0759.20011MR1130000
  4. [4] K.A. Hirsch, On infinite soluble groups. - III, Proc. London Math. Soc. (2), 49 (1946), pp. 184-194. Zbl0063.02021MR17281
  5. [5] A. Lubotzky - A. Mann, Residually finite groups of finite rank, Math. Proc. Cambridge Philos. Soc. (3), 106 (1989), pp. 385-388. Zbl0696.20031MR1010362
  6. [6] D.H. McLain, Finiteness conditions in locally soluble groups, J. London Math. Soc., 34 (1959), pp. 101-107. Zbl0092.02101MR103222
  7. [7] N.P. Mukherjee - P. Bhattacharya, On the intersection of a class of maximal subgroups of a finite group, Can. J. Math. (3), 39 (1987), pp. 603-611. Zbl0619.20007MR905746
  8. [8] D.J.S. Robinson, Finiteness Conditions and Generalized Soluble Groups (2 vols.), Springer, Berlin (1972). Zbl0243.20033
  9. [9] D.M. Smirnov, On the theory of finitely approximable groups, Ukrain. Math. Ž., 15 (1963), pp. 453-457. Zbl0136.27301MR158929
  10. [10] B.A.F. Wehrfritz, Infinite Linear Groups, Springer, Berlin (1973). Zbl0261.20038MR335656

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.