An Iff solvability condition for the oblique derivative problem
Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991)
- page 1-7
Access Full Article
topHow to cite
topLerner, N.. "An Iff solvability condition for the oblique derivative problem." Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991): 1-7. <http://eudml.org/doc/112010>.
@article{Lerner1990-1991,
author = {Lerner, N.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {local solvability; condition ; Nirenberg-Treves conjecture; pseudodifferential operators; oblique derivative},
language = {eng},
pages = {1-7},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {An Iff solvability condition for the oblique derivative problem},
url = {http://eudml.org/doc/112010},
year = {1990-1991},
}
TY - JOUR
AU - Lerner, N.
TI - An Iff solvability condition for the oblique derivative problem
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1990-1991
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 7
LA - eng
KW - local solvability; condition ; Nirenberg-Treves conjecture; pseudodifferential operators; oblique derivative
UR - http://eudml.org/doc/112010
ER -
References
top- [1] R. Beals, C. Fefferman: On local solvability of linear partial differential equations, Ann. of Math.97, (1973), 482-498. Zbl0256.35002MR352746
- [2] Y.V. Egorov: The canonical transformations of pseudo-differential operators, Usp.Mat.Nauk, 24: 5 (1969), 235-236. Zbl0191.43802MR265748
- [3] Y.V. Egorov, V.A. Kondrat'ev: The oblique derivative problem, Math.USSR Sbomik vol. 7(1969),1. Zbl0186.43202
- [4] L. Hörmander: Propagation of singularities and semi-global existence theoremsfor (pseudo-) differential operators of principal type, Ann. of Math.108, (1978), 569-609. Zbl0396.35087MR512434
- [5] L. Hörmander: The Analysis of Linear Partial Differential Operators (1985) Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo, 4 volumes. Zbl0601.35001
- [6] N. Lerner: Sufficiency of condition (ψ) for local solvability in two dimensions, Ann. of Math., 128 (1988), 243-258. Zbl0682.35112
- [7] A. Melin, J. Sjöstrand: Fourier integral operators with complex-valued phase functions, Springer Lectures Notes, 459, (1975),120-233. Zbl0306.42007MR431289
- [8] A. Melin, J. Sjöstrand: A calculus for Fourier integral operators in domains with boundary and applications to the oblique derivative problem, Comm.PDE, 2 (9), (1977) 857-935. Zbl0392.35055MR458508
- [9] S. Mizohata: Solutions nulles et solutions non- analytiques, J. Math.Kyoto Un.1, 271-302, (1962). Zbl0106.29601MR142873
- [10] R.D. Moyer: Local solvability in two dimensions: necessary conditions for the principal type case, University of Kansas, Mimeographed manuscript, (1978).
- [11] L. Nirenberg, F. Treves: On local solvability of linear partial differential equations. I. Necessary conditions. Zbl0191.39103
- II Sufficient conditions. Correction. Comm.Pure Appl. Math., 23 (1970) 1-38 and 459-509; 24 (1971) 279-288.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.