Liminf behaviours of the windings and Lévy's stochastic areas of planar brownian motion

Zhan Shi

Séminaire de probabilités de Strasbourg (1994)

  • Volume: 28, page 122-137

How to cite

top

Shi, Zhan. "Liminf behaviours of the windings and Lévy's stochastic areas of planar brownian motion." Séminaire de probabilités de Strasbourg 28 (1994): 122-137. <http://eudml.org/doc/113868>.

@article{Shi1994,
author = {Shi, Zhan},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {winding angle; Lévy’s stochastic area; planar Brownian motion; laws of the iterated logarithm},
language = {eng},
pages = {122-137},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Liminf behaviours of the windings and Lévy's stochastic areas of planar brownian motion},
url = {http://eudml.org/doc/113868},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Shi, Zhan
TI - Liminf behaviours of the windings and Lévy's stochastic areas of planar brownian motion
JO - Séminaire de probabilités de Strasbourg
PY - 1994
PB - Springer - Lecture Notes in Mathematics
VL - 28
SP - 122
EP - 137
LA - eng
KW - winding angle; Lévy’s stochastic area; planar Brownian motion; laws of the iterated logarithm
UR - http://eudml.org/doc/113868
ER -

References

top
  1. Abramowitz, M. & Stegun, I.A. (1965). Handbook of Mathematical Functions. Dover, New York. Zbl0171.38503
  2. Baldi, P. (1986). Large deviations and functional iterated law for diffusion processes. Probab. Th. Rel. Fields71435-453. Zbl0587.60074MR824713
  3. Bélisle, C. (1991). Windings of spherically symmetric random walks via Brownian embedding. Statist. Probab. Letters12345-349. Zbl0803.60062MR1131063
  4. Berthuet, R. (1981). Loi du logarithme itéré pour certaines intégrales stochastiques. Ann. Sci. Univ. Clermont-Ferrand II Math.199-18. Zbl0491.60031MR645559
  5. Berthuet, R. (1986). Etude de processus généralisant l'Aire de Lévy. Probab. Th. Rel. Fields73463-480. Zbl0597.60071MR859843
  6. Bertoin, J. & Werner, W. (1994a). Comportement asymptotique du nombre de tours effectués par la trajectoire brownienne plane. This volume. Zbl0810.60077
  7. Bertoin, J. & Werner, W. (1994b). Asymptotic windings of planar Brownian motion revisited via the Ornstein-Uhlenbeck process. This volume. Zbl0814.60080
  8. Chung, K.L. (1948). On the maximum partial sums of sequences of independent random variables. Trans. Amer. Math. Soc.64205-233. Zbl0032.17102MR26274
  9. Csáki, E. (1978). On the lower limits of maxima and minima of Wiener process and partial sums. Z. Wahrscheinlichkeitstheorie verw. Gebiete43205-221. Zbl0372.60113MR494527
  10. Dorofeev, E.A. (1994). The central limit theorem for windings of Brownian motion and that of plane random walk. Preprint. MR1267472
  11. Durrett, R. (1982). A new proof of Spitzer's result on the winding of two-dimensional Brownian motion. Ann. Probab.10244-246. Zbl0479.60081MR637391
  12. Feller, W. (1951). The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statist.22427-432. Zbl0043.34201MR42626
  13. Franchi, J. (1993). Comportement asymptotique presque sûr des nombres de tours effectués par le mouvement brownien d'une variété riemannienne compacte de dimension 2 ou 3. Technical Report No. 189, Laboratoire de Probabilités Université Paris VI. April 1993. 
  14. Gruet, J.-C.& Mountford, T.S.. (1993). The rate of escape for pairs of windings on the Riemann sphere. Proc. London Math. Soc.48552-564. Zbl0803.60040
  15. Helmes, K. (1985). On Lévy's area process. In: Stochastic Differential Systems (Eds.: N. Christopeit, K. Helmes & M. Kohlmann. Lect. Notes Control Inform. Sci.78187-194. Springer, Berlin. Zbl0609.60041
  16. Helmes, K. (1986). The "local" law of the iterated logarithm for processes related to Lévy's stochastic area process. Stud. Math.83229-237. Zbl0614.60025MR850825
  17. Itô, K. & McKean, H.P.. (1974). Diffusion Processes and their Sample paths. 2nd Printing. Springer, Berlin. Zbl0285.60063
  18. Kochen, S. & Stone, C. (1964). A note on the Borel-Cantelli lemma. Illinois J. Math.8248-251. Zbl0139.35401
  19. Ledoux, M. & Talagrand, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes. Springer, Berlin. Zbl0748.60004
  20. Lévy, P. (1951). Wiener's random function, and other Laplacian random functions. Proc. Second Berkeley Symp. Math. Statist. Probab.171-181. Zbl0044.13802MR44774
  21. Lipschutz, M. (1956). On strong bounds for sums of independent random variables which tend to a stable distribution. Trans. Amer. Math. Soc.81135-154. Zbl0073.12502MR77015
  22. Lyons, T. & McKean, H.P. (1984). Windings of the plane Brownian motion. Adv. Math.51212-225. Zbl0541.60075
  23. Messulam, P. & Yor, M.. (1982). On D. Williams' pinching method and some applications. J. London Math. Soc.26348-364. Zbl0518.60088
  24. Pitman, J.W. & Yor, M.. (1982). A decomposition of Bessel bridges.Z. Wahrscheinlichkeitstheorie verw. Gebiete59425-457. Zbl0484.60062
  25. Pitman, J.W. & Yor, M. (1986). Asymptotic laws of planar Brownian motion. Ann. Probab.(Special Invited Paper) 14733-779. Zbl0607.60070
  26. Pitman, J.W.& Yor, M. (1989). Further asymptotic laws of planar Brownian motion. Ann. Probab.17965-1011. Zbl0686.60085
  27. Rogers, L.C.G. & Williams, D. (1987). Diffusions, Markov Processes and Martingales, vol. II: Itô Calculus. Wiley, Chichester. Zbl0627.60001
  28. Shi, Z. (1994). Windings of Brownian motion and random walk in R2. Preprint. MR1617043
  29. Spitzer, F. (1958). Some theorems concerning 2-dimensional Brownian motion. Trans. Amer. Math. Soc.87187-197. Zbl0089.13601MR104296
  30. Williams, D. (1974). A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion. Univ. College, Swansea. Unpublished. 
  31. Yor, M. (1992). Some Aspects of Brownian Motion. Part I: Some Special Functionals. Birkhäuser, Basel. Zbl0779.60070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.