Liminf behaviours of the windings and Lévy's stochastic areas of planar brownian motion
Séminaire de probabilités de Strasbourg (1994)
- Volume: 28, page 122-137
Access Full Article
topHow to cite
topShi, Zhan. "Liminf behaviours of the windings and Lévy's stochastic areas of planar brownian motion." Séminaire de probabilités de Strasbourg 28 (1994): 122-137. <http://eudml.org/doc/113868>.
@article{Shi1994,
author = {Shi, Zhan},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {winding angle; Lévy’s stochastic area; planar Brownian motion; laws of the iterated logarithm},
language = {eng},
pages = {122-137},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Liminf behaviours of the windings and Lévy's stochastic areas of planar brownian motion},
url = {http://eudml.org/doc/113868},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Shi, Zhan
TI - Liminf behaviours of the windings and Lévy's stochastic areas of planar brownian motion
JO - Séminaire de probabilités de Strasbourg
PY - 1994
PB - Springer - Lecture Notes in Mathematics
VL - 28
SP - 122
EP - 137
LA - eng
KW - winding angle; Lévy’s stochastic area; planar Brownian motion; laws of the iterated logarithm
UR - http://eudml.org/doc/113868
ER -
References
top- Abramowitz, M. & Stegun, I.A. (1965). Handbook of Mathematical Functions. Dover, New York. Zbl0171.38503
- Baldi, P. (1986). Large deviations and functional iterated law for diffusion processes. Probab. Th. Rel. Fields71435-453. Zbl0587.60074MR824713
- Bélisle, C. (1991). Windings of spherically symmetric random walks via Brownian embedding. Statist. Probab. Letters12345-349. Zbl0803.60062MR1131063
- Berthuet, R. (1981). Loi du logarithme itéré pour certaines intégrales stochastiques. Ann. Sci. Univ. Clermont-Ferrand II Math.199-18. Zbl0491.60031MR645559
- Berthuet, R. (1986). Etude de processus généralisant l'Aire de Lévy. Probab. Th. Rel. Fields73463-480. Zbl0597.60071MR859843
- Bertoin, J. & Werner, W. (1994a). Comportement asymptotique du nombre de tours effectués par la trajectoire brownienne plane. This volume. Zbl0810.60077
- Bertoin, J. & Werner, W. (1994b). Asymptotic windings of planar Brownian motion revisited via the Ornstein-Uhlenbeck process. This volume. Zbl0814.60080
- Chung, K.L. (1948). On the maximum partial sums of sequences of independent random variables. Trans. Amer. Math. Soc.64205-233. Zbl0032.17102MR26274
- Csáki, E. (1978). On the lower limits of maxima and minima of Wiener process and partial sums. Z. Wahrscheinlichkeitstheorie verw. Gebiete43205-221. Zbl0372.60113MR494527
- Dorofeev, E.A. (1994). The central limit theorem for windings of Brownian motion and that of plane random walk. Preprint. MR1267472
- Durrett, R. (1982). A new proof of Spitzer's result on the winding of two-dimensional Brownian motion. Ann. Probab.10244-246. Zbl0479.60081MR637391
- Feller, W. (1951). The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statist.22427-432. Zbl0043.34201MR42626
- Franchi, J. (1993). Comportement asymptotique presque sûr des nombres de tours effectués par le mouvement brownien d'une variété riemannienne compacte de dimension 2 ou 3. Technical Report No. 189, Laboratoire de Probabilités Université Paris VI. April 1993.
- Gruet, J.-C.& Mountford, T.S.. (1993). The rate of escape for pairs of windings on the Riemann sphere. Proc. London Math. Soc.48552-564. Zbl0803.60040
- Helmes, K. (1985). On Lévy's area process. In: Stochastic Differential Systems (Eds.: N. Christopeit, K. Helmes & M. Kohlmann. Lect. Notes Control Inform. Sci.78187-194. Springer, Berlin. Zbl0609.60041
- Helmes, K. (1986). The "local" law of the iterated logarithm for processes related to Lévy's stochastic area process. Stud. Math.83229-237. Zbl0614.60025MR850825
- Itô, K. & McKean, H.P.. (1974). Diffusion Processes and their Sample paths. 2nd Printing. Springer, Berlin. Zbl0285.60063
- Kochen, S. & Stone, C. (1964). A note on the Borel-Cantelli lemma. Illinois J. Math.8248-251. Zbl0139.35401
- Ledoux, M. & Talagrand, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes. Springer, Berlin. Zbl0748.60004
- Lévy, P. (1951). Wiener's random function, and other Laplacian random functions. Proc. Second Berkeley Symp. Math. Statist. Probab.171-181. Zbl0044.13802MR44774
- Lipschutz, M. (1956). On strong bounds for sums of independent random variables which tend to a stable distribution. Trans. Amer. Math. Soc.81135-154. Zbl0073.12502MR77015
- Lyons, T. & McKean, H.P. (1984). Windings of the plane Brownian motion. Adv. Math.51212-225. Zbl0541.60075
- Messulam, P. & Yor, M.. (1982). On D. Williams' pinching method and some applications. J. London Math. Soc.26348-364. Zbl0518.60088
- Pitman, J.W. & Yor, M.. (1982). A decomposition of Bessel bridges.Z. Wahrscheinlichkeitstheorie verw. Gebiete59425-457. Zbl0484.60062
- Pitman, J.W. & Yor, M. (1986). Asymptotic laws of planar Brownian motion. Ann. Probab.(Special Invited Paper) 14733-779. Zbl0607.60070
- Pitman, J.W.& Yor, M. (1989). Further asymptotic laws of planar Brownian motion. Ann. Probab.17965-1011. Zbl0686.60085
- Rogers, L.C.G. & Williams, D. (1987). Diffusions, Markov Processes and Martingales, vol. II: Itô Calculus. Wiley, Chichester. Zbl0627.60001
- Shi, Z. (1994). Windings of Brownian motion and random walk in R2. Preprint. MR1617043
- Spitzer, F. (1958). Some theorems concerning 2-dimensional Brownian motion. Trans. Amer. Math. Soc.87187-197. Zbl0089.13601MR104296
- Williams, D. (1974). A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion. Univ. College, Swansea. Unpublished.
- Yor, M. (1992). Some Aspects of Brownian Motion. Part I: Some Special Functionals. Birkhäuser, Basel. Zbl0779.60070
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.